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Abstract: A new biomechanism, Bioactive Kinetic Screw (BKS) for screws and bone implants created
by the first author, is presented using a bone dental implant screw, in which the bone particles,
blood, cells, and protein molecules removed during bone drilling are used as a homogeneous
autogenous transplant in the same implant site, aiming to obtain primary and secondary bone
stability, simplifying the surgical procedure, and improving the healing process. The new BKS is
based on complex geometry. In this work, we describe the growth factor (GF) delivery properties and
the in situ optimization of the use of the GF in the fixation of bone screws through a dental implant.
To describe the drilling process, an explicit dynamic numerical model was created, where the results
show a significant impact of the drilling process on the bone material. The simulation demonstrates
that the space occupied by the screw causes stress and deformation in the bone during the perforation
and removal of the particulate bone, resulting in the accumulation of material removed within the
implant screw, filling the limit hole of the drill grooves present on the new BKS.

Keywords: bone implant contact; growth factors; growth factors delivery; fixation screws;
biomechanics

1. Introduction

Growth factors (GFs) are protein molecules that have a role in controlling biological
processes, such as cell growth, proliferation, differentiation, and repair. GFs cannot pass
through a cell’s membrane; they must bind to high-affinity cell receptors to take effect.
Many GFs stimulate several cell populations, while others are less versatile and are spe-
cific to a particular cell line. Whatever the tissue involved, the healing process always
involves a series of molecular, biochemical, and cellular events that can be grouped into
three overlapping phases: inflammation, proliferation, and remodelling [1].

GFs have been used in oral surgery and the most often used and analysed are the bone
morphogenetic proteins (BMPs) [2]. More than 20 different BMPs with multiple functions
have been detected with an importance in embryogenesis and repair tissues in human
adults [3].

Platelet-derived growth factor (PDGF) [1] can be dismissed during blood clotting in
any type of tissue injury that promotes chemotaxis and mitogenesis [4].
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Fibroblast growth factor (FGF), parathyroid hormone (PTH), transforming growth
factor-β (TGF-β), vascular endothelial growth factor (VEGF), and insulin-like growth factor
(IGF) have been the subject of various studies [5–13].

Several options have been described [14] to obtain GFs such as autogenous bone
grafts, xenografts, allografts, alloplastic grafts, membranes for guided bone regeneration
(GBR), platelet-rich plasma (PRP), inlay and onlay grafting, and distraction osteogenesis.
Autogenous bone graft is still considered the gold standard for bone repair, despite some
difficulties in its application in clinical practice, related to the morbidity of the procedures
and the quantity and quality of available bone.

Mixing growth factors with implants or osteo-inductive scaffolds can promote new
bone formation at the graft site during replacement of the newly formed bone [1].

The potential of GFs in bone regeneration has been studied by different authors [15–18],
but there is no common sense as to how they work together. Further studies are needed
to identify predictable in vivo outcomes. The new biomechanism reuses all the material
from the cut and perforation performed by the BKS screw as a homogeneous autogenous
transplant, stimulating from the beginning of the inflammation the natural healing and
repair factors, allowing for better bone remodelling to be tested.

2. Materials and Methods

To describe this ongoing research, an explicit dynamic numerical model was developed
using ANSYS 2020 R2 ®—Workbench 2020 R2 with the new BKS biomechanism [19] in
titanium alloy versus cortical bone material. This program is a nonlinear transient dynamic
finite element program with an explicit time scheme function. The equation of motion is
evaluated in the previous time step and works in time step increments, where displacements
are calculated as time progresses. Gradually, over time, the deformation also changes. The
numerical model aims to simulate the drilling process of the BKS biomechanism and
evaluate the mechanical stress distribution in the bone material.

The new BKS biomechanism, as seen in Table 1, also presents itself as a new delivery
system for the use of natural growth factors (GF), since the characteristic of the new
biomechanism is to introduce protein molecules, cells, blood, and particulate bone through
the new screw hole by a drill channel system as an innovative biomechanism; it also
becomes a new means of delivery of GFs in surgery for bone expansion, lifting, and
fixation [1]. Adding the advantages of using homogeneous autogenous bone (new gold
standard to be tested), its macro design is bioactive for the first time in bone implants.

To observe chip formation and chip flow mechanism in a virtual environment, an
explicit dynamic finite element analysis must be done with the BKS tool and bone work
piece interaction. The BKS diameter is 4 mm and the bone workpiece material has a
diameter of 10 mm in diameter, a height of 8 mm, and a central hole of 2 mm with a height
of 2 mm.

In this work, three-dimensional finite element modelling, and numerical analysis were
carried out to simulate the dynamic process of dental bone perforation. The 3D models
were built in Solidworks ®and ANSYS 2020 R2 ®—Workbench 2020 R2 software programs.
The BKS modelling was carried out in Solidworks and imported into ANSYS Workbench,
as shown in Figure 1. After importing the Solidworks model into ANSYS, a bone block
(workpiece) was constructed, representing the surrounding dental bone.

Several authors used the Johnson–Cook model, or its modified formulations [20–25],
to investigate and describe problems in which the strain-rate component was relevant.
The Johnson–Cook model is the simplest model able to predict the mechanical behaviour
of the materials under different loading conditions. It is one of the most used material
models, so it is implemented in many finite element codes, and therefore the values of the
Johnson–Cook parameters for different materials are quite easy to find in the literature. In
the study, both models were modelled by Johnson–Cook material for explicit behaviour,
where titanium alloy was chosen as the screw and the workpiece was in bone material. The
mechanical properties of the materials used in the study are shown in Table 1.
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the effective strain. Different mesh convergence tests were performed to minimize 
computational error. Figure 2 represents the mesh model and all applied boundary 
conditions.  

All boundary conditions were considered due to the dynamic characteristics 
involved in the drilling process. In the presented simulation, the BKS tool was provided 
with an angular velocity of 300 rpm and a feed rate equal to 0.5 mm/sec vertically down 
into the bone, in the absence of irrigation, how it is intended to be used in ongoing 
research. Only the mechanical load was considered in the model and the thermal effect 
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Figure 1. New biomechanical screw (BKS) of 4 mm width and 10 mm length.

Table 1. Mechanical Properties [23].

Ti6Al4V of BKS Bone

Density 4510 kg/m3 1850 kg/m3

Shear Modulus 4.4 × 1010 Pa 6.54 × 108 Pa

Initial Yield Stress 8.5 × 108 Pa 1 × 107 Pa

Maximum Yield Stress 1.45 × 109 Pa 1.25 × 108 Pa

Titanium alloys are the most attractive metallic materials for biomedical applica-
tions, and are used for various implants and dental devices [26]. Ti6Al4V is hetero-
geneous and used for different medical implants, namely for dental osseo-integrated
screws [26]. The chemical composition of Ti6Al4V is almost 90% titanium, 6.19% alu-
minium, 3.67% vanadium, 0.17% iron, and 0.12% oxygen [26].

Based on the geometrical models, finite element meshes were generated. The numeri-
cal model was prepared in ANSYS 2020 R2 ®—Workbench 2020 R2. The BKS model and the
bone disc were meshed with 3D SOLID elements. Lagrangian finite element model-based
simulations were performed to determine the effective stress and the effective strain. Dif-
ferent mesh convergence tests were performed to minimize computational error. Figure 2
represents the mesh model and all applied boundary conditions.
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All boundary conditions were considered due to the dynamic characteristics involved
in the drilling process. In the presented simulation, the BKS tool was provided with an
angular velocity of 300 rpm and a feed rate equal to 0.5 mm/sec vertically down into the
bone, in the absence of irrigation, how it is intended to be used in ongoing research. Only
the mechanical load was considered in the model and the thermal effect produced by the
BKS was not considered in the present simulation.

In the simulation, the end time specifies the number of iterations to be performed by
the solver and informs the solver when to stop the process. Since the bone workpiece is
8 mm in length, and the feed rate is 0.5 mm/s, then a final time of 16 s is needed for the
entire length of the screw to be covered with the bone. The contact between the BKS-cortical
bone is designed to be frictional, with a static friction coefficient equal to 0.4 and a dynamic
friction coefficient 0.2. The bottom and the lateral face of the bone workpiece were fixed,
with free movement in the axial direction, as shown in Figure 2.

The numerical model consisted of a total of 17,079 linear elements (BKS with tetra-
hedrons and bone in hexahedron elements) with a total of 9588 nodes. The element size
used in the bone was equal to 5 × 10−4 m. The BKS was analysed under dynamic loading
to ensure the safety of the design. The loading step type was the explicit integration of
time into final time equal to 6 × 10−4 s. The contact interaction was formulated using the
algorithm proposed from the program. The contact surface is updated as elements on the
free surface are deleted according to the material’s failure criteria. In this work, erosion
controls with geometric strain limit were imposed equal to 1.5 on material criteria failure.

3. Results and Discussion

Numerical results of strain and stress level were obtained during the drilling process.
Figure 3 shows the numerical results of strain and stress at the end of the simulation.
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The numerical results show a significant impact of the drilling process on the bone
material at the end of the simulation, with a higher level of strain and stress.

The numerical results show that the stress and strain level in the bone tends to increase
with the perforation of BKS. In the depth of the hole around the centre of the material, the
BKS exerted greater stress and strain, consequently causing more deformation.

The equivalent elastic strain determines the variation in the stress impact of the drilling
process on the material. Extreme strain was induced at the edge of the material, inside the
central hole of the bone.

The equivalent stress value is higher when compared to the yield stress material. After
the stresses beyond the yield point, the material undergoes inelastic strain and a permanent
deformation occurs, called plastic deformation. The equivalent plastic strain is the total
strain energy of this plastic deformation.

Figure 4 shows the formation of the plastic strain over different time instants of the
drilling process. Different images were collected from which it is possible to identify that
the BKS screw during the drilling process does not present plastic strain. Bone material
during perforation presents high plastic strain which increases with the material removed.
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The surface around the drilled hole demonstrated the high strain at the beginning of
the drilling operation. In the drilled hole, it could be verified that the elements were re-
moved when the yield stress and rupture due to plastic strain in the material were reached.

The simulation described demonstrates that the space occupied by the screw causes
stress and deformation in the bone during the perforation and removal of the bone particle,
resulting in the accumulation of material removed inside the implant screw filling the limit
hole of the drill grooves present in the new biomechanism. This material was released
during the surgical bone drilling, along with the bone particle created in the drilling step.

New Line of Research for Osseo-Integrated Screws

Bone regeneration using implants coated with GFs stimulated local osseo-integration
using screw-type dental implants [18].

The great potential of GFs in bone regeneration has been discussed by several au-
thors [15–18], their limitations seem to be the unpredictable nature of the resulting tissue
regeneration in vivo [27].

Giannoudis et al. [28] introduced the “Diamond Concept” to describe the conditions
necessary for osteogeneration: mechanical stability at the defect site, osteogenic cells
combined with osteo-inductive growth factors, and a suitable carrier or delivery system.
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The delivery system ensures normal protein concentrations at the site of injury for as long
as necessary to allow the regenerative cells to migrate, proliferate, and differentiate [29,30].

Collagen is the most abundant protein in the mammalian connective tissue and the
main non-mineral component of bone. It has been prepared in implantable absorbable
powders, membranes, films, and sponges, as well as in aqueous forms. Although versatile
and easy to manipulate, the manufacture of collagen carriers is highly sensitive to several
factors (including mass, soak time, protein concentration, sterilization, buffer composition,
pH, and ionic strength) that directly affect rhBMPs binding [31].

Alginate is a non-immunogenic polysaccharide used in a wide range of tissue engineer-
ing applications for its gel-forming properties. Alginate hydrogels, allowing a controlled
and prolonged release of BMPs, have been studied only in the preclinical phase, with
promising results in vitro [32,33]. Chitosan is a cationic gluco-polymer well known for
its biological, chelating, and adsorbent properties, and has been used as a BMP-2 carrier
in a rat critical-size mandibular defect model, with positive results in histological and
histomorphometric analyses [34]. Hyaluronic acid is a naturally occurring biopolymer
that plays a significant role in wound healing. It has been associated with improved bone
formation in mandibular defects compared to collagen sponges when both were used to
carry rhBMP-2 [35].

Hydroxyapatite (HA) has been widely used as a bone substitute material in clinical
practice since the 1970s due to its ability to bind directly to bone [6,33,36–38]. The most
used polymers applied as bone grafts are polylactic acid (PLLA) and polyglycolic acid
(PLGA) [39].

Bone grafts act as scaffolds, allowing bone to grow on their surface and into the
material. The combination of osteoconductive scaffolds with osteo-inductive proteins has
been a major focus of research [40,41]. The coating GFs on dental implant surfaces have
been shown to be able to stimulate bone formation around the implants [28,42]. Some
research with gene delivery through adenoviral or liposomal vectors in animal models
have been studied [43,44].

Scarano et al. [45] studying bone formation in the concavities and convexities of
dental implants, demonstrated that early bone formation was observed mainly in the
concavities of implant screws inserted in rabbit tibia. Among other factors, there was a
greater concentration of vessels within these concavities. The experiment results supported
this hypothesis and the formation of blood vessels appeared to be stimulated by the
presence of Scoops.

Platelet-rich fibrin (PRF) [46] is an autologous material that is easy to produce; it can
be derived from a person’s own blood and is used to promote wound healing and tissue
regeneration. PRF is expected to have a direct effect on enhancing tissue regeneration by
saturating these tissues with blood growth factors. This is especially important in tissues
with limited blood supply, such as bone tissue compared to soft tissue.

In the new biomechanism (BKS) the hard tissue removed during bone drilling and
screwing at the same time, due to the new characteristics, uses the chips (bone particles,
blood, cells, and protein molecules) to fill the hole passing through the drill grooves in
the new screw. The screw was created based on the concepts of using drills for bone
drilling and screws for fixing and implants [41]. Considering that the traditional drill flutes
eliminate the bone particulate removed after cutting, the author created a limit for these
flutes that are found through a hole connecting and limiting the cut grooves, preventing
the removal of all material from the drilling. This drilling particulate material is compacted
in and through the screw, increasing the bone contact surface and creating a graft bone
bridge of particulate material through the screw.

With surface treatments using electrochemical anodization [47] to create nanotubes
and the coating with (CaP), [48] we can make the new screw, bioactive model in macro-,
micro-, and nano-design, and the delivery system “diamond concept” [28] of GFs in a new
biomechanism which meets the characteristics that are still considered the gold standard [1]
for bone healing in implants and fixations screws. Future studies will aim to confirm these
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results for this new biomechanism. Furthermore, a new line of research is opened up for
osseo-integrated screws, with homogenous autogenous transplant and a growth factor
delivery system.

4. Conclusions

The proposed new Bioactive Kinetic Screw (BKS) allows the use of bone, blood, cells,
and protein molecules removed in bone drilling to be introduced through the screw using
an innovative insertion and compacting biomechanism. This makes it a new growth factor
delivery system to be tested, where all the stages in which these factors act, inflamma-
tion, proliferation, and remodelling are attended to, as well as the principles of the gold
standard for autogenous transplantation and the diamond concept for delivery system
being retained. The immediate use of homogeneous autogenous bone, blood, protein
molecules, and cells without external manipulation to deliver GFs is innovative, creating
new possibilities for both research and studies in bone healing, fracture fixation, bone im-
plants, and osseo-integration. This work also presents the stresses generated during bone
drilling using the dynamic explicit finite element method. This numerical model provides
a new and enhanced approach to dental bone drilling based on the complex geometry of
the new BKS. As a general conclusion, the stress level increases with drilling time and
with increasing hole depth. These numerical models can be used as an important tool for
planning accurate and safe medical procedures. In the present study, there is a limitation
in the numerical model. Only the mechanical load was considered in the model and not
the thermal effect produced by the BKS. Future work will involve the thermo–mechanical
process to compare the results with the present research.
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