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Abstract
A smooth polynomial shaped command with an adjustable command time length is proposed for eliminating the residual vibrations of a multi-mode sys-

tem. The ability of eliminating jerks and vibrational modes, regardless of their number, offers the most advantage of the proposed command. A numeri-

cal simulation is conducted to test the command’s effectiveness by eliminating the residual sloshing oscillations of a liquid-filled container conveyed by

an overhead crane in a rest-to-rest manoeuvre. The governing equations of the liquid free-surface level are derived by modelling the sloshing dynamics

by a series of mass–spring–damper harmonics. The proposed model accounts for the coupling between the pendulum dynamics and the sloshing equiv-

alent mechanical model. The command’s robustness to the system parameters’ uncertainties, liquid depth and cable length, are investigated as well. The

ability of adjusting the command length and retaining higher sloshing modes in command-designing are also outlined.
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Introduction

In modern industrial automation systems, rest-to-rest man-

oeuvres, such as in robotic manipulators, overhead or gantry
cranes, and automotive and space industries, are extensively

used to convey containers between different locations. Such
manoeuvres are functioned along automated lines and

repeated cycles. Vibration control is usually employed to
enhance the accuracy of manoeuvres and to lead to faster,

safer, and cost-effective operations. In the case of conveying a

liquid container subjected to rapid excitation, the problem of
sloshing arises. The induced liquid sloshing may affect the

motion stability which could cause accidents that compromise
safety, result in an economic loss, delay the overall process,

and cause structural fatigue from the long-term pressure on
the container wall. Excessive liquid sloshing may also cause

spillage (molten metal in the case of metal industries).
Two types of induced oscillations are experienced when

conveying suspended liquid-filled containers: the sloshing of

the liquid inside; and the swing motion of the overhead crane.
Conveying the container at low speeds, often lower than the

capability of driven-motors, limits its sway motion, and hence

maintains sloshing within tolerable limits but incurs increas-
ing operational time. Furthermore, considerable time is

wasted while waiting for the residual vibrations to die out
before issuing the next command. Lowering transient liquid

sloshing reduces the risks of operations in conveying hazar-
dous liquids, while lowering residual sloshing makes the oper-

ation efficient, fast and accurate. Therefore, to eliminate the
induced transient and residual sloshing while reducing the

operational time and ensuring a safe and cost-effective opera-
tion, a controlling technique has to be employed.

Recently, passive and active controlling techniques were

extensively used by many researchers in controlling and sup-

pressing the induced liquid sloshing. Even though adding

absorbers and baffles as passive controlling techniques dissi-

pates sloshing, it increases both the overall system’s weight

and complexity (Hasheminejad et al., 2014; Wang et al.,

2016). Alternatively, active control techniques succeeded in

suppressing liquid sloshing. Kaneshige et al. (1996, 1997)

were among the first to use control systems to suppress

liquid sloshing in overhead crane systems. Feddema et al.

(1997) used the fundamental mode of oscillation and the

damping of the liquid in an open container carried by a

robot arm for controlling the surface of the liquid using an

infinite impulse response filter. Yano and Terashima (2001)

employed H‘ control theory to suppress sloshing in transfer-

ring a liquid container horizontally and with the rotational

motion of the container by modelling the sloshing dynamics

as an equivalent simple pendulum. Kaneshige et al. (2009)

proposed an autonomous mobile overhead crane system that

detects obstacles and suppresses sloshing in the transfer of a

liquid tank. Zang and Huang (2015) and Huang and Zhao

(2018) developed a three-dimensional nonlinear slosh model

for suppressing the sloshing in a moving container. Cooker
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(1994) modelled the induced wave motions in a suspended
container. Turner and Bridges (2013) and Turner et al.
(2015a, 2015b) derived the nonlinear equations of the free-
surface motions for a suspended liquid-filled container.
Several active control techniques which are proposed, simu-

lated, and tested in sloshing suppression are given in
Kaneshige et al. (2008), Reyhanoglu and Rubio Hervas
(2013), Baozeng and Lemei (2014), Zang et al. (2015), and
Biagiotti et al. (2018).

Unlike feedback control that requires liquid–motion sen-
sors to acquire real-time measurements of the liquid sloshing,
input shaping technique induces minimal transient and resi-
dual vibrations with a specially shaped input generated by
convolving a general reference command signal with
sequences of specified timed impulses. Singer and Seering
(1990), Hyde and Seering (1991), Singer and Seering (1992),
Singhose et al. (1994, 1996), and Singhose and Pao (1997) are
among the first who used input shaping techniques to attenu-
ate residual vibrations in different vibrational systems. The
drawbacks of input shaping are the high sensitivity to model-
ling errors and parameter variations. Aboel-Hassan et al.
(2009) and Zang et al. (2015) suppressed sloshing in moving
containers using robust input shaping. Murthy et al. (2012)
and AlSaibie and Singhose (2013) tested different input shap-
ing methods in suppressing sloshing of a suspended liquid-
filled container. Pridgen et al. (2013) designed multi-mode
robust input shapers for slosh suppression in a laterally mov-
ing liquid-filled container. Xing and Huang (2020) recently
suppressed the liquid sloshing in a suspended container by
designing a smooth robust shaper that targets the fundamen-
tal mode and attenuates the higher modes by means of low-
pass filtration.

Using a single-mode control that targets the induced
vibrations from the primary mode while neglecting the higher
modes does not guarantee complete elimination of the resi-
dual vibrations. Since the sloshing can be modelled as a
multidegree-of-freedom system, this necessitates the use of a
multi-mode command controller. Alhazza and Masoud

(2016), Masoud and Alhazza (2017), and Alshaya and
Alghanim (2020) proposed a multi-steps input command and
a waveform command to eliminate the residual vibrations of
multi-mode systems. Alghanim et al. (2018) proposed a
polynomial-based command for a single degree-of-freedom
system. Unlike multi-steps input commands which usually
degrade the performance due to actuation delay and mis-
match timing, reduce the life expectancy of the actuator, and
increase maintenance due to jerks, the continuous form of the
polynomial-based command can be easily adjusted to have
any level of smoothness. The aim of this work is to propose a
smooth polynomial shaped command (PSC) that produces
fast manoeuvring and accurate positioning while eliminating
the residual vibrations of all the modes in a multi-mode sys-
tem. The proposed command is utilized to suppress all the
sloshing modes induced from conveying a suspended liquid
container by an overhead crane with different design and sys-
tem parameters. The derived model in this work is based on
modelling the sloshing dynamics as a series of mass–spring–
damper systems and it accounts for the coupling between the
pendulum dynamics from the overhead crane and the slosh-
ing equivalent mechanical model.

Designing a PSC

In this section, a PSC is proposed to eliminate the excited

vibrations of a multi-mode system leading to zero residual

vibrations at the end of the command duration. The specific

rest-to-rest manoeuvre conditions are also outlined.

Theoretical development

A multi-mode linear system of order N with a single input can

be generally written as in Equation (1):

M €Y(t)+C _Y(t)+KY(t)=Bf (t) ð1Þ

where M,C, and K are the mass, damping, and stiffness

matrices, Y is the generalized coordinates vector, B is a con-

stant vector, and f (t) is the system single input. The natural

frequencies of the undamped system, vn, i and their corre-

sponding mode shapes, Fi, can be obtained from the charac-

teristic equation, Equation (2):

K� v2
n, iM

� �
Fi = 0, for i= 1, 2, . . . ,N ð2Þ

where F= F1 F2 � � � FN½ �T is the modal matrix where

each of its columns represents the normal mode correspond-

ing to vn, i. The system of Equation (1) can be further

decoupled using modal analysis by expressing the generalized

coordinates Y(t) in terms of the mode shapes as given by

Equation (3):

Y(t)=FC(t)=
XN

i= 1

Fici(t) ð3Þ

where C(t)= c1(t) c2(t) � � � cN (t)f gT is the time-

dependent generalized principal (decoupled) coordinates vec-

tor. Upon carrying the first and second derivatives of

Equation (3) and substituting the results into Equation (1)

and then pre-multiplying the resultant equation by FT to uti-

lize the orthogonality property of the mode shapes, the equa-

tions of motion are given by Equation (4):

mi
€ci + ci

_ci + kici = pif (t), for i= 1, 2, . . . ,N ð4Þ

where mi, ci, and ki are the diagonal elements of the diagonal

matrices m=FTMF, c=FTCF, and k=FTKF, respec-

tively, and pi are the elements of the vector p=FTB. It

should be noted that the damping matrix, C, has to be line-

arly proportional to the mass and stiffness matrices, otherwise

the modal damping matrix, c, will not be fully uncoupled.

Polynomial Shaped Command (PSC)

A general polynomial profile of order m1 is proposed, as given

by Equation (5):

€u(t)=
Xm

k = 0

aktk ð5Þ
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where ak are the polynomial coefficients. Substitution of

Equation (5) into Equation (4) and assuming all the principal

coordinates experience underdamped vibration, that is, zi\1

and zero initial conditions, the general solutions of ci(t) and

their time derivatives using Duhamel integral are given by
Equations (6) and (7):

ci(t)= 1� e�zivn, i t cosvd, it+
zivn, i

vd, i
sinvd, it

� �� �
bi, 0

+ t � 1

vd, i

e�zivn, i t sinvd, it

� �
bi, 1 +

Xm

k = 2

bi, k tk

ð6Þ

_ci(t)=
v2

n, i

vd, i

e�zivn, i t sinvd, it

" #
bi, 0

+ 1+
e�zivn, i t

vd, i
zivn, i sinvd, it � vd, i cosvd, itð Þ

� �
bi, 1

+
Xm

k = 2

kbi, k tk�1 ð7Þ

where vn, i =
ffiffiffiffiffiffiffiffiffiffiffi
ki=mi

p
and vd, i =vn, i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

i

q
are the

undamped and damped natural frequencies of the multi-mode

system, respectively. The coefficients bi, k are defined by the
following recursive relations, as given by Equation (8):

bi,m =
piam

ki

bi,m�1 =
piam�1 � mcibi,m

ki

bi, k =
piak � (k + 1)cibi, k + 1 � (k + 1)(k + 2)mibi, k + 2

ki

for k =m� 2,m� 3, . . . , 1, 0

ð8Þ

If one of the principal coordinates experiences critical or

overdamped vibration, Equations (6) and (7) should be
adjusted accordingly. The recursive relations in Equation (8)

can be written in a matrix form as Tibi = pia where

bi = bi, 0 bi, 1 � � � bi,mf gT , a= a0 a1 � � � amf gT and
Ti is a tri-diagonal square matrix, namely, as given by

Equation (9):

ki ci 2mi 0 � � � 0 0 0

0 ki 2ci (3)(2)mi � � � 0 0 0

0 0 ki 3ci � � � 0 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 � � � � � � ki (m� 1)ci m(m� 1)mi

0 0 0 � � � � � � 0 ki mci

0 0 0 � � � � � � 0 0 ki

2
6666666666664

3
7777777777775

bi, 0

bi, 1

bi, 2

..

.

bi,m�2

bi,m�1

bi,m

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

= pi

a0

a1

a2

..

.

am�2

am�1

am

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð9Þ

The polynomial coefficients, ak , must be determined by

satisfying zero residual vibrations at the end of the command

duration. If the time interval of the shaped command is cho-

sen to be t, then substitution of t = t into the solution of the

principal coordinates ci, Equation (6), and its time deriva-

tives, Equation (7), yields a system of linear algebraic equa-

tions (Equations (10) to (12)):

Aibi = 0 ð10Þ

where Ai is a matrix of size 2 3 (m+ 1) and its elements are

defined as,

Ai(1, 1)= 1� e�zivn, it cosvd, it +
zivn, i

vd, i

sinvd, it

� �

Ai(1, 2)= t � 1

vd, i
e�zivn, it sinvd, it

Ai(1, k)= tk�1

Ai(2, 1)=
v2

n, i

vd, i

e�zivn, it sinvd, it

Ai(2, 2)= 1+
e�zivn, it

vd, i

zivn, i sinvd, it � vd, i cosvd, itð Þ

Ai(2, k)= (k � 1)tk�2 for k = 3, 4, . . . , 2N

ð11Þ

Upon using bi = piT
�1
i a from Equation (9), one can rewrite

Equation (10) in terms of the polynomial coefficients, a= ak ,

as given by Equation (12):

Ua= 0 ð12Þ

where matrix U= piAiT
�1
i has a size of 2N 3 (m+ 1). For a

system with negligible damping (undamped), Equation (12)

can be used by setting zi = 0 in Equation (11). Additional

physical constraints on the system input command such as

maximum velocity, force and/or power have to be imposed to

have a nontrivial solution. The only information needed are

the natural frequencies and damping ratios of the multi-mode

system to design the PSC where its duration is adjustable and

independent of the system frequencies and damping ratios.

However, decreasing the manoeuvre time will increase the

sensitivity of the system and will consequently affect the com-

mand performance. The mathematical analysis of the PSC

can be successfully applied on many systems such as cranes

conveying multi-loads or liquid containers and translating or

rotating beams.

Problem formulation

The effectiveness of the proposed PSC is tested by suppres-

sing the induced residual liquid sloshing by an overhead crane

conveying a rigid-walled liquid-filled container as shown in

Figure 1(a). The overhead crane is modelled by a moving jib

(slider) with a proposed predefined acceleration command,

€u(t), while the rigid-walled container of mass mc, width W ,

and height H swings in the xy-plane with an oscillation angle

u(t). The container has a mass moment of inertia Ic with

respect to its own centre of mass. It is filled with water of a
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filling level h and attached to the sliding jib by a rigid mass-

less link of length l.

Mechanical model of sloshing dynamics

Figure 1(b) shows the corresponding equivalent mass–spring–

damper mechanical system that each represents one of the

vibratory modes of the liquid sloshing. The sloshing dynamics

of this equivalent mechanical model are the same as multiple

pendulum systems. Even though the dynamics behaviour of

the sloshing induced by the combination of heaving and pitch-

ing excitations is generally nonlinear, this equivalent mechani-

cal model provides a realistic representation of the liquid free-

surface wave oscillations as stated in Graham and Rodriguez

(1952) and Ibrahim (2005). For simplicity, only the lateral

motion is considered.
The liquid inside the container can be modelled as two

parts: a fixed part moving with the container; and the other

part induces the sloshing waves. The fixed part is modelled as

a rigidly attached mass, m0, and a moment of inertia I0 (see

Figure 1(b)). The liquid which experiences sloshing is repre-

sented by a series of n lumped (point) masses, mi, attached to

the container’s walls by an equivalent spring stiffness ki and

equivalent viscous damper ci (i= 1, 2, . . . , n) (see Figure

1(b)). The corresponding motion of the liquid surface of the i-

th sloshing mode is represented by the relative displacement

qi of mass mi with respect to the container’s walls along the

container-fixed lateral axis. The distances from the liquid cen-

tre of mass in its undistributed condition, h=2, to the the rigid

mass, m0, and the equivalent i-th lumped mass, mi are

denoted by h0 and hi, respectively. The container’s shape and

dimension and liquid’s filling depth, h, and characteristic

define the values of m0, I0, h0,mi, hi, ki, ci of the equivalent

mechanical system as given in Graham and Rodriguez (1952)

and Ibrahim (2005).
The liquid free-surface elevation is given by Equation (13):

h(x, y, t)=
Xn

i= 1

fi(x, y)qi(t) ð13Þ

where fi(x, y) is the i-th sloshing spatial mode function and

qi(t) is the time-dependent function. The surface wave motion

at the edges of the container (x=6W=2 and y= 0), where
the spillage is most likely to occur, is given by Equation (14):

d(t)=h(6W=2, 0, t)=
Xn

i= 1

fi(6W=2, 0)qi(t) ð14Þ

Mathematical model

The position vectors of the container’s centre of mass, the
liquid fixed-mass, m0, and the i-th point mass, mi are given,

respectively, by Equations (15) to (17):

Pc = u� lc sin u , � lc cos u½ � ð15Þ

P0 = u� l0 sin u , � l0 cos u½ � ð16Þ

Pi = u� li sin u+ qi cos u , � li cos u� qi sin u½ �
for i= 1, 2, . . . , n

ð17Þ

where u is the jib horizontal displacement and lc = l +H=2,

l0 = l +H � h=2+ h0, and li = l+H � h=2� hi are the dis-

tances from the jib to the container’s centre of mass, the
liquid fixed-mass, m0, and the i-th lumped mass, mi, respec-

tively. Upon using Lagrange’s formulation, the following

fully coupled nonlinear differential equations (Equations
(18a), (18b), (19a) and (19b)) in the angular coordinate u(t)

and the n lateral relative displacements qi(t) were obtained:

Ieq +
Xn

i= 1

miq
2
i

" #
€u�

Xn

i= 1

mili€qi + 2
Xn

i= 1

miqi _qi

" #
_u

+ Mlg � €u
Xn

i= 1

miqi

" #
sin u

�
Xn

i= 1

miqi

" #
g cos u=Ml€u cos u

ð18aÞ

mi€qi + 2zvimi _qi +(v2
i � _u2)miqi � mili€u� mig sin u

=� mi€u cos u for i= 1, 2, . . . , n
ð18bÞ

where vi and z are the natural frequency of the mass-spring-
damper systems and liquid damping ratio, respectively, g is

the gravitational acceleration, and

Ieq = Ic +mcl2
c + I0 +m0l2

0 +
Xn

i= 1

mil
2
i and

Ml =mclc +m0l0 +
Xn

i= 1

mili

Assuming small oscillations of angle u and surface wave

motion qi and neglecting higher order terms, Equations (18a)

and (18b) are reduced to Equations (19a) and (19b):

Ieq
€u�

Xn

i= 1

mili€qi +Mlgu� g
Xn

i= 1

miqi =Ml€u ð19aÞ

Figure 1. (a) a rigid-walled liquid-filled container conveyed by an

overhead crane; and (b) the corresponding equivalent mechanical model

of the liquid sloshing modes.
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� mili€u+mi€qi + 2zvimi _qi � migu+v2
i miqi

=� mi€u for i= 1, 2, . . . , n
ð19bÞ

Equations (19a) and (19b) can be written in a matrix form as
in Equation (1) with generalized coordinates given by

Y= u q1 � � � qnf gT and the jib acceleration as the sys-
tem input, f (t)= €u(t).

Command designing

The absence of the system’s natural frequencies and the pres-

ence of nonlinearities in Equations (18a) and (18b) necessi-
tates the need of using the linearlized Equations (19a) and

(19b) when designing the PSC. The basic operation of the
rest-to-rest manoeuvres consist of three stages: acceleration;
cruising; and deceleration. It is practical to dissipate the

induced residual vibrations before the next stage is intro-
duced. For subsequent analysis, the time lengths of the accel-

eration, cruising, and deceleration stages are denoted by ta, tc,
and td , respectively.

To have zero residuals at the end of the command interval,

d(t) and u(t) and their time derivatives have to be set to zero.
Furthermore, to achieve an optimum manoeuvre time,

T = ta + tc + td , the command should utilize the full input
velocity, vf , and acceleration, amax, capabilities. Therefore,

the following constraints during the acceleration stage have
to be imposed, as given by Equation (20):

u(ta)= 0, _u(ta)= 0, d(ta)= 0, _d(ta)= 0,ðta

0

€u(t) dt= vf , j€ujł amax

ð20Þ

The wave motion amplitude of the free-surface d(ta) will equal

zero if qi(ta)= 0 for all values of i as suggested from Equation
(14). The equality constraints in Equation (20) produce
2(n+ 1)+ 1= 2n+ 3 equations. Therefore, at least 2n+ 3

coefficients, that is, a polynomial of order m= 2n+ 2, are
needed to satisfy all the equality constraints in Equation (20)

while ensuring that j€uj\amax.
According to Equation (3), the swing angle and the liquid

wave surface motion will be zero at the end of the accelera-

tion stage, t = ta, if all the principal coordinates, ci, (for
i= 1, 2, . . . ,N where N in this case is N = n+ 1) are set to

zero at t = ta. To ensure that the jib reaches its maximum
velocity, Equation (5) should be integrated from 0 to ta and

equated to the required cruising speed vf , namely, as given by
Equation (21):

ðta

0

€u(t) dt=
Xm

k = 0

ak

k + 1
tk + 1
a = vf ð21Þ

Upon combining Equations (20) and (21) with Equation

(12), one can simultaneously solve for the polynomial coeffi-
cients, ak . The shaper that satisfies the specific rest-to-rest

manoeuvre conditions, Equation (20), is referred to herein as
an unsmooth shaper.

The sudden movement of the jib at the beginning and the

end of the acceleration and deceleration stages may affect the
motor’s performance. Therefore, additional constraints of

zero acceleration at the beginning and the end of the accelera-

tion (and deceleration) stages can be imposed, as given by
Equation (22):

€u(0)= 0, €u(ta)= 0 ð22Þ

To satisfy this condition, two more polynomial coefficients

should be added which gives a total of 2n+ 5 coefficients.
The shaper that satisfies the rest-to-rest constraints, Equation
(20), and zero initial and final acceleration in the acceleration
(and deceleration) stage, Equation (22), is referred to as a
semi-smooth shaper.

Furthermore, the smoothness of the command profile at

the beginning and the end of the acceleration (and decelera-
tion) stage can also be enhanced by forcing the jerk to be zero
at t = 0 and ta, that is, as given by Equation (23):

u
...
(0)= 0, u

...
(ta)= 0 ð23Þ

Therefore, the shaper with 2n+ 7 coefficients that satisfies
the essential rest-to-rest constraints, Equation (20), and zero

acceleration and jerk at the beginning and end of the accelera-
tion (and deceleration) stage, Equations (22) and (23), is
referred to as a smooth shaper.

In order to bring the slider to a complete stop at the target
point, the magnitudes of the polynomial coefficients in the
deceleration stage are basically the inversion of those in the

acceleration stage. The covered distance during either the
acceleration, sa, or deceleration, sd , stages are determined as
given by Equation (24):

sa = sd =

ðta

0

ð t̂

0

€u(t)dt dt̂=
Xm

k = 0

ak

(k + 1)(k + 1)
tk + 2
a ð24Þ

To ensure that the jib moves a certain travel distance, d, the
covered distance during the cruising stage is sc = d � 2sa and
the corresponding time interval is tc = sc=vf . Therefore, the
deceleration command has to start at ta + tc.

Even though that the designing of the command is inde-
pendent of the command’s time length, t, the latter is con-
strained by the maximum jib acceleration, amax, and the total
travelling distance, d. In the case of a fast command (small
time duration t), the maximum acceleration of the PSC may

exceed the predefined maximum acceleration, amax, and will
result in higher sloshing waves. In contrast, for the case of a
short manoeuvre distance or slow command (large time dura-
tion t), the start time of the deceleration stage may fall within

the acceleration phase. This implies that the shaped command
does not utilize the maximum acceleration and/or velocity
capabilities of the system.

Simulation results

When designing a PSC to suppress the liquid sloshing of the
free-surface wave, two factors should be considered: how
many sloshing modes have to employed; and how deep is the
liquid. Some applications require considering the higher

modes and not only rely on the fundamental sloshing mode.
The maximum jib velocity and acceleration, the total travelled
distance, the dimensions of the container, and the properties
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Table 1. Kinematics of the jib, dimensions of the container, and the properties of the liquid (water) used in numerical simulation.

Container dimensions Value Jib kinematics Value

Width, W (cm) 25 Travel distance, d (m) 0.6

Height, H (cm) 50 Maximum velocity, vf (m/s) 0.3

Cable length, l (cm) 30 Maximum acceleration, amax (m=s2) 0.9

Container properties Liquid (water) parameters

Mass, mc (kg) 10 Mass density, r(kg=m3) 1000

Mass moment of inertia, Ic (kg � m2) 0.01 Liquid filling level, h (cm) 2.5

Table 2. Comparison of natural frequencies in (rad/s) between the laterally excited system and the linearized suspended system for a liquid filling

depth of h=W = 0:1 and cable length ratio of l=H= 0:6.

Lateral motion Suspended system–Sloshing modes

Equation (26e) Single Three Five

v0 =
ffiffiffiffiffiffiffiffiffiffi
g=leff

p
3.9110 vn1

3.8282 3.8277 3.8277

v1 6.1239 vn2
7.5799 7.5584 7.5576

v2 16.502 vn3
17.094 17.091

v3 23.776 vn4
24.03 24.025

v4 29.017 vn5
29.138

v5 33.193 vn6
33.260

Figure 2. Time-optimal–rigid-body profile and corresponding dynamic transient (unshaded) and residual (shaded) responses using (a) single, (b)

three, and (c) five sloshing modes, and (d) command profile (h=W = 0:1 and l=H= 0:6).
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of the liquid (water) used in the numerical simulation are

listed in Table 1. The Graham and Rodriguez (1952) model is

utilized here to obtain the masses, spring constants, and

damping constants of the sloshing modes as given in

Equations (26a) to (26i) in the Appendix. The analyses are

conducted by neglecting the damping effects which represents

the worst-case scenario. The polynomial coefficients of the

PSC, ak , are determined from the linear resonant frequencies

where the dynamics response is obtained from the nonlinear

governing Equation (18).

Natural frequencies

The natural frequencies of the linearized suspended system

can be determined from Equation (2) for different numbers of

sloshing modes. The obtained natural frequencies from the

current model agreed very well with those determined from a

model proposed by Xing and Huang (2020). Two previous

studies by Murthy et al. (2012) and AlSaibie and Singhose

(2013) utilized Equation (26e) in the Appendix to determine

the natural frequencies of the suspended container to design

(a) (b)

(c) (d)

Figure 3. Different PSC profiles and their corresponding dynamic responses (h=W = 0:1, l=H= 0:6, n= 1, and the smallest manoeuvre time): (a)

swing angle; (b) free-surface wave motion; (c) jib acceleration; and (d) jib velocity.

Table 3. Coefficients of different input polynomial profiles with the smallest manoeuvre time (h=W = 0:1, l=H= 0:6, and n= 1).

Case a0 a1 a2 a3 a4 a5 a6 a7 a8

Unsmooth 0.8596 �6:907 20.51 �23:15 8.769 � � � �
Semismooth 0 26.82 �263:2 912.9 �1429 1032 �279:7 � �
Smooth 0 0 239.7 �2321 8563 �15660 15170 �7466 1470
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the input-shaping. The natural frequency of any suspended

body can be approximated as v0 =
ffiffiffiffiffiffiffiffiffiffiffi
g=leff

p
where leff is the

effective length from the jib to the body’s centre of mass. It is

worth noting that Equation (26e) in the Appendix was derived

based on the assumption that the rectangular container was

only excited in the lateral direction. Using the parameters

given in Table 1, the approximated natural frequencies due to

the swinging motion, v0, and the laterally excited frequencies,

vi, from Equation (26e) in the Appendix are listed in Table 2.

However, the obtained natural frequencies that consider the

swing motion of the liquid inside the suspended container

with single, three, and five sloshing modes obtained from

Equation (2) are also listed in Table 2. It is worth noting that

there is a 20% difference between the second natural fre-

quency determined from Equation (2) with that determined

from Equation (26e) in the Appendix.

Variation of system and command-designing
parameters

For comparison, the time-optimal–rigid-body (TORB) com-

mand which represents the fastest possible command profile

(a) (b)

(c) (d)

Figure 4. Different PSC profiles and their corresponding dynamic responses (h=W = 0:1, l=H= 0:6, n= 1 and a manoeuvre time of T = 3.90 s): (a)

swing angle; (b) free-surface wave motion; (c) jib acceleration; and (d) jib velocity.

Table 4. The ranges of the acceptable manoeuvre time (in second) and their corresponding sloshing oscillation Q in (mm) for different SPC profiles

(h=W = 0:1 and l=H= 0:6).

Unsmooth Semismooth Smooth

n ½Tmin, Tmax� ½Qmin,Qmax� ½Tmin, Tmax� ½Qmin,Qmax� ½Tmin, Tmax� ½Qmin,Qmax�

1 [3.32, 3.99] [2.272, 1.036] [3.23, 3.99] [3.269, 0.938] [3.27, 3.99] [3.608, 1.048]

3 [3.26, 3.99] [2.575, 1.043] [3.28, 3.90] [2.419, 0.938] [3.35, 3.99] [2.324, 1.288]

5 [3.35, 3.99] [2.093, 1.184] [3.28, 3.99] [3.023, 1.238] [3.29, 3.99] [3.021, 1.259]

7 [3.22, 3.99] [2.998, 1.222] [3.27, 4.00] [2.844, 1.468] [3.45, 4.04] [2.071, 1.477]
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based on utilizing the full input acceleration and velocity cap-
abilities regardless of the output response is considered as the
reference case of the uncontrolled (unshaped) command. The

manoeuvre time of TORB is T = 2:33 s. The transient
(unshaded) and residual (shaded) dynamics responses, u(t)
and d(t), of TORB using the nonlinear equations of motion
(Equation (18)), and the linearized form (Equation (19)), are
illustrated in Figure 2 for different retained sloshing modes.
The maximum swing angle is within the acceptable range of
the linearity assumption which supports the use of the linear
form in command-designing.

Variation of command length. For a single sloshing mode
with liquid filling ratio of h=W = 0:1, the profiles of the
unsmooth (T = 3:32 s), semismooth (T = 3:23 s) and smooth
(T = 3:27 s) PSCs and their corresponding dynamics
responses are illustrated in Figure 3. The corresponding coef-
ficients of the PSCs for each of the unsmooth, semismooth
and smooth profiles are listed in Table 3. Even though the
unsmooth, semismooth, and smooth profiles make the system
42.3% (3.32 versus 2.33 s), 38.4% (3.23 versus 2.33 s), and

40.1% (3.27 versus 2.33 s) slower than TORB, the reduction

in the sloshing waves is significant (see Figure 3(b)). It is clear

from Figures 3(c) and 3(d) that the PSCs utilize the maximum
acceleration and velocity capabilities to achieve the optimum

manoeuvre time. The semismooth and smooth profiles, and
hence their dynamic responses, are almost similar. The pro-

files become smoother as the manoeuvre time increases, that
is, making the system moves slowly, as shown in Figure 4

(corresponding to a manoeuvre time of T = 3.90 s). Even
though the sloshing was significantly reduced, the system is

67.4% (3.90 versus 2.33 s) slower than the TORB.
The liquid inside the container, which is basically a contin-

uous system, can be modelled by a sufficient large n

multidegree-of-freedom systems. The input command

designed based on a large number of lumped masses in the
equivalent mechanical model will naturally give higher accu-

racy of the resulting sloshing dynamics. Using a time incre-
ment of 0.01 seconds that represents the sampling time of an

actuator’s hardware, the acceptable ranges of the manoeuvre
times that are within T 2 ½Tmin, Tmax�, the designed PSC satis-

fies the rest-to-rest constraints for different numbers of slosh-
ing modes are listed in Table 4. The root-mean-square of the

amplitude oscillations of the free-surface wave,
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(a) (b)

(c) (d)

Figure 5. Smooth PSCs and the corresponding dynamic responses using different sloshing modes (h=W = 0:1 and l=H= 0:6): (a) swing angle; (b)

free-surface wave motion; (c) jib acceleration; and (d) jib velocity.
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Q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j= 1

Pn
i= 1

qi(tj)

� �2

m

vuuut

is used to quantify the sloshing oscillation. The terms Qmin

and Qmax, respectively, denote the sloshing oscillations corre-

sponding to the smallest, Tmin and largest, Tmax manoeuvre

time. It is clear from Table 4 that increasing the manoeuvre

time will significantly reduce the sloshing oscillations. For

instance, when using a single sloshing mode with h=W = 0:1,

the response of the semismooth PSC reduces the sloshing

oscillations by 71% (3.269 versus 0.938 mm) with the price of

making the system 24% slower (3.23 versus 3.99 s).

Furthermore, using the semismooth PSC will make the sys-

tem faster than the unsmooth (3.23 versus 3.32 s) and the

smooth (3.23 versus 3.27 s) commands and will result in a

larger reduction in the sloshing oscillations, Q, compared to

the unsmooth (0.938 versus 1.036 mm) and smooth (0.938

versus 1.048 mm) commands, respectively. Similar behaviour

can be observed for higher sloshing modes. Therefore, it is

recommended to use either the semismooth or the smooth

PSCs rather than using the unsmooth command to avoid the

sudden movement of the jib at the beginning and the end of

the acceleration and deceleration stages.

Retaining higher sloshing modes. The PSC designed based on
a single sloshing mode has a high sensitivity in the variations

of the modeling error and system parameters. Using a liquid
depth ratio of h=W = 0:1 and cable length ratio of l=H = 0:6,
the dynamic responses of the smooth PSC for different num-

bers of sloshing modes are illustrated in Figure 5. Considering

the higher sloshing modes in command-designing necessitates

the need for using higher polynomial orders of the shaped

command and results in a larger manoeuvre time. Retaining

higher sloshing modes has a major effect on the free-surface

motion compared to the swing motion. In addition to making

the response slower, suppressing residual oscillations at higher

sloshing modes has a minor improvement. The total man-

oeuvre times for a single, three, five, and seven sloshing modes
are 3.27, 3.35, 3.29, and 3.45 s, respectively. Using three to

five sloshing modes is quite sufficient in representing the

liquid sloshing dynamics.

(a) (b)

(c) (d)

Figure 6. The free-surface wave motion when using higher sloshing modes with smooth PSC designed based on (a) 7, (b) 11, (c) 15, and (d) 19

polynomial coefficients (h=W = 0:1 and l=H= 0:6): (a) seven coefficients; (b) 11 coefficients; (c) 15 coefficients; and (d) 19 coefficients.
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To further assess the effect of sloshing modes in com-

mand-designing, the influence of the higher modes in a com-

mand designed based on lower modes is illustrated in Figure

6. Figure 6(a) shows the response of higher sloshing modes,

n= 3, 5, and 7 subjected to a smooth PSC designed based on

a single mode, n= 1 (seven coefficients). Figures 6(b) to (6d)

show the response of higher sloshing modes when subjected

to smooth PSCs designed using lower modes. It is clear that

designing a smooth PSC based on five modes, n= 5, will

guarantee the elimination of the residual vibrations from the

higher modes.

Variation of liquid depth. The sloshing frequencies depend on
the liquid-filling level to the width of the container, h=W .

Using five sloshing modes and cable length ratio of

l=H = 0:6, the smooth PSC and its corresponding dynamics

response are depicted in Figure 7. The wave surface oscilla-

tions decrease with the increasing of the liquid level. The

dynamic response and the input profile of a shallow water

depth h=W = 0:1 are quite different than the responses of

deep water depths, h=W ø 0:2. As shown in Figure 7(a), the

swing angle experiences two peaks due to the liquid sloshing

in the acceleration (and deceleration) stage. The motion of

the liquid free-surface was significantly reduced (see Figure

7(b)), and the maximum swing angle was slightly increased

(see Figure 7(a)), with the increasing of the liquid depth, that

is, increasing the mass of the liquid. The PSC, and hence the

dynamic response, of the liquid container with h=W ø 0:4 are

almost identical. If the liquid depth exceeds a certain critical

value, the sloshing frequencies do not significantly change.

Therefore, a controlling technique has to be employed in con-

veying a shallow liquid-filled container with h=W ł 0:2.

Variation of cable length. The frequency corresponding to the
swing motion depends on the length of the cable, l, that

attaches the container to the moving jib. Using five sloshing

modes and a liquid depth ratio of h=W = 0:1, the smooth

PSC and its dynamics response are illustrated in Figure 8

when using different cable lengths. The increase in the cable

length increases the manoeuvre time and induces larger

liquid-surface oscillations. The dynamic responses and input

profiles of the suspended system with a long cable length

(a) (b)

(c) (d)

Figure 7. Smooth PSCs and the corresponding dynamic responses using different liquid depth ratios, h=W (l=H= 0:6 and n= 5): (a) swing angle;

(b) free-surface wave motion; (c) jib acceleration; and (d) jib velocity.
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(a) (b)

(c) (d)

Figure 8. Smooth PSCs and the corresponding dynamic responses using different cable length ratios, l=H (h=W = 0:1 and n= 5): (a) swing angle;

(b) free-surface wave motion; (c) jib acceleration; and (d) jib velocity.

(a) (b)

Figure 9. The effects of introducing damping (z= 0:01) on the dynamic responses for different liquid depth ratios (l=H= 0:6 and n= 5): (a) swing

angle; and (b) free-surface wave motion.
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l=H ø 0:6 are quite different than the responses of the system

with a short cable length, l=H\0:6. The PSCs, and hence the

dynamics responses, of the liquid container with l=H ł 0:6
are almost identical. This suggests that the PSC is sensitive to

the changes of the cable length.

Effects of introducing damping. The previous analyses were
performed while neglecting the effect of the dissipative force

of the water on the container’s wall. The water damping ratio

can be taken as z = 0:01 based on the approximation of an

analytical expression given in Abramson (1966). For the

smooth PSC designed for the undamped system and based on

five sloshing modes and a cable length ratio of l=H = 0:6, the
effects of introducing damping on the dynamic responses,

swing angle and free-surface wave motion, for different depth

ratios are illustrated in Figure 9. It is clear from Figure 9 that

the damping has negligible effects on deep water depths,

h=W ø 0:4. However, for shallow water depths, h=W ł 0:2,
the residual sloshing is not completely suppressed in the cruis-

ing stage. To further assess the effects of adding more damp-

ing on a shallow water depth (h=W = 0:1), the dynamic

responses for different damping ratios are depicted in Figure

10. Adding more damping will increase the residual sloshing

in the cruising stage where no noticeable change is observed

in the swing angle.

Sensitivity analysis

The PSC is designed based on the actual system’s resonant

frequencies. These frequencies are usually approximate values

determined either experimentally or from a dynamics model.

Therefore, variations in one or more frequencies due to the

changes in the liquid depths during manoeuvre and/or the

measuring uncertainty in the cable length and liquid depth

will certainly produce nonzero residual oscillations at the end

of the manoeuvre. Hence, it is necessary to test the robustness

of the PSC designed based on certain system parameter

values by applying it to a model with different parameter val-

ues. The vibration amplitude at the end of the command

duration is computed as given by Equation (25):

Vib:Amp:=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u(ta)

2 +
_u(ta)

vn, 1

� �2
s

+
1

h

Xn

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi(ta)

2 +
_qi(ta)

vn, i+ 1

� �2
s ð25Þ

The percentage of the vibration amplitude of the PSCs to the

vibration amplitude of the TORB command versus the

changes of the liquid depth and cable length are illustrated in

Figure 11. The shaded regions in Figure 11 represent the 5%

vibration tolerance.
For instance, using the determined coefficients from a

cable length of 0.3 m and a water depth of hm = 25 mm

(h=W = 0:1), the numerically simulated vibration amplitude

percentage when varying the water depth 630% from its nom-

inal depth is plotted in Figure 11(a) using different command

lengths. The PSC is clearly sensitive to the changes of the

water depth in shallow water depths. The command robust-

ness is enhanced when using larger command lengths. If the

analysis was repeated for a water depth ratio of h=W = 0:2,
the PSC becomes less sensitive to the depth changes (see

Figure 11(c)). The same behaviour can be observed for a

water depth ratio of 0.4 (see Figure 11(e)). Consequently, a

PSC is expected to give superior performance when the oper-

ating depth is larger than the designed modelled depth.
The computed vibration amplitude percentages when

changing the cable length 650% from its nominal length,

lm = 0:3 m, are plotted in Figures 11(b), 11(d), and 11(f) for

different water depth ratios and command lengths. Similarly,

increasing command length will increase the command

robustness. Furthermore, Figures 11(b), 11(d), and 11(f) also

suggest that PSC becomes less sensitive to the changes of the

cable length in deep water depths.

(a) (b)

Figure 10. The effects of adding damping on the dynamic responses (h=W = 0:1, l=H= 0:6, and n= 5): (a) swing angle; and (b) free-surface wave

motion.
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The time-varying of the water depth, the estimate design

values of the cable length and water depth, and the nonlinea-

rities of the system do not guarantee zero residual vibrations

in the actual system. Therefore, command robustness can be

improved by several ways. Increasing the command interval

enhances the command robustness as shown in Figure 11. In

addition, the robustness could also be enhanced by using a

higher order polynomial, with coefficients more than the min-

imum number m= 2n+ 2 required to satisfy the rest-to-rest

manoeuvres, and using the excess to enhance the command

Figure 11. Sensitivity analysis of the proposed PSC to the changes of liquid depth and cable length for different sloshing modes, n, and command

length, ta: (a) h=W = 0:1; hm = 25 mm and l= 0:3 m; (b) h=W = 0:1; h= 25 mm and lm = 0:3 m; (c) h=W = 0:2; hm = 50 mm and l= 0:3 m; (d)

h=W = 0:2; h= 50 mm and lm = 0:3 m; (e) h=W = 0:4; hm = 100 mm and l= 0:3 m; and (f) h=W = 0:4; h= 100 mm and lm = 0:3 m.
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robustness. In addition, two fictitious frequencies could be

added adjacent to the modelling frequency (analogous to the

extra-insensitive technique) to widen the range of command

robustness. Finally, and similar to the concept of zero-vibra-

tion-derivative shaper, adding extra constraints of setting the

derivative of the residual vibration amplitude with respect to

natural frequencies to zero also improves the command

robustness. To limit the maximum free-surface sloshing dur-

ing the motion, an appropriate command length should be

chosen accordingly or an additional constraint that limits the

maximum water elevation to within a certain predefined value

could be imposed in the command-designing process.

Conclusions

A smooth PSC which can be designed from the system’s natu-

ral frequencies and damping ratios was proposed for elimi-

nating the residual vibrations of a multi-mode system without

the full knowledge of the system model. The independence of

the command’s time length suggests unlimited possibilities of

optimum profiles that compensate between the manoeuvre

time (speed), transient deflection (safety), input power

(energy), etc. However, there is a minimum command length

governed by the maximum allowable command amplitude.

The continuous form of the proposed PSC renders the possi-

bility of adjusting any level of smoothness, eliminates jerks,

that is, inrush currents, enhances actuator’s performance and

eliminates the inaccurate timing and delay of the actuator.
The efficacy of the PSC is demonstrated by suppressing

the liquid sloshing of a suspended liquid container. The pro-

posed model accounts for the coupling between the pendulum

dynamics and the sloshing dynamics represented by an equiv-

alent mechanical model that is based on a series of mass–

spring–damper systems. Even though the PSC slowed down

the system compared to the uncontrolled command, the

reduction of the liquid oscillations during the overall motion

was significant. The effectiveness of the PSC with variations

in the system and command-designing parameters was

demonstrated using numerical simulations. At least five slosh-

ing modes should be considered when modelling the sloshing

dynamics. Parametric sensitivity analyses are conducted to

test the robustness of the PSC over a wide range values of

cable length and liquid depth. The results suggest using an

understated water depth when designing the PSC. The time

interval of the command should be selected to compensate

between the operational time, desired transient reduction,

and command’s sensitivity. For a container subjected to a

higher speed, the nonlinear model should alternatively be

used in command-designing.
It should be noted that the PSC can be designed for any

set of driven-motor capabilities (d, vf , and amax) and system

parameters (vn, i and zi represented by the container dimen-

sion and the inside fluid). Therefore for a real case situation,

these values are changed and a PSC can be designed accord-

ingly. The presented results show the effectiveness of the PSC

when employing higher sloshing modes, changing liquid depth

and cable length, and introducing water damping effects. It is

necessary to employ a controlled input when conveying shal-

low water depth containers.
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Appendix

Equivalent mechanical model parameters

The equivalent mass mi, stiffness constant ki, and viscous

damper constant ci of the i th sloshing mode, the rigid mass
m0 and mass moment of inertia I0 of the fixed liquid that
moves with the container, the distances h0 and hi from the

liquid’s centre of gravity, h=2, to the fixed mass m0 and i th
mass point mi for a two-dimensional rectangular rigid-walled

container of width W (in the direction of wave motion) and
height H with a liquid filling level h as shown in Figure 1(b)
are given by Graham and Rodriguez (1952; Equations (26a)

to (26i)):

mi =
8mf

p3

tanh ((2i� 1)ph=W )

(2i� 1)3h=W
ð26aÞ

hi

h
=

1

2
� tanh ((2i� 1)ph=2W )

(2i� 1)ph=2W
ð26bÞ

ki = 8mf g
tanh2 ((2i� 1)ph=W )

p2(2i� 1)2h
ð26cÞ
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ci = 2zvimi(26d)

vi =

ffiffiffiffiffi
ki

mi

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pg

W
(2i� 1) tanh (2i� 1)

ph

W

� �s
ð26eÞ

m0 =mf �
Xn

i= 1

mi ð26fÞ

h0 =�
1

m0

Xn

i= 1

mihi ð26gÞ

I0 = IF � m0h2
0 �

Xn

i= 1

mih
2
i ð26hÞ

IF =
mf

12
h2 � 3W 2 +

768W 3

p5h

Xn

i= 1

tanh ((2i� 1)ph=2W )

(2i� 1)5

" #

ð26iÞ

where mf = rWh=
Pn

i= 0 mi is the total liquid mass in the
container; vi corresponds to the natural frequency of the i th
sloshing mode of a liquid surface; z is the liquid damping
ratio; r is the liquid density; and g is the gravitational
acceleration.

Nomenclature

a= ak Polynomial coefficients of the PSC, €u(t)
amax Jib maximum acceleration
B Forcing vector
ci Equivalent viscous damper constant of the i th

sloshing mode
c= ci Modal damping matrix
C Damping matrix
d Travel distance
f (t) System input
g Gravitational acceleration, g = 9:81m=s2

h Liquid filling level
h0 Distance from liquid centre of gravity, h=2, to

the liquid rigid mass, m0

hi Distance from liquid centre of gravity, h=2, to

the equivalent i th mass point, mi

H Container height
I0 Mass moment of inertia of the liquid rigid

mass, m0

Ic Mass moment of inertia of the container
Ieq Equivalent mass moment of inertia
ki Equivalent spring stiffness constant of the i th

sloshing mode
k= ki Modal stiffness matrix
K Stiffness matrix

l Length of the rigid link
l0 Distance from the jib to the liquid fixed-mass,

m0

lc Distance from the jib to the container’s centre

of mass
li Distance from the jib to the i-th lumped mass,

mi

m Polynomial order of the input shaped

command
m0 Rigid mass of the fixed liquid
mc Mass of the container
m=mi Modal inertia matrix
mi Equivalent mass of the i th sloshing mode
mf Total liquid mass, mf

M Inertia matrix
n Number of liquid sloshing modes
p= pi Forcing vector in the modal system
qi(t) Lateral displacement of the lumped mass mi,

that is, surface wave oscillation
_qi, €qi Lateral velocity and acceleration of the lumped

mass mi

Q Root-mean-square of liquid wave oscillation

sa, sc, sd Travelled distance in acceleration, cruising,

and deceleration stages
t Time coordinate
ta, tc, td Time interval of acceleration, cruising, and

deceleration stages
T Total manoeuvre time
u, _u, €u Jib horizontal displacement, velocity, and

acceleration
vf Jib maximum velocity
W Container width
d(t) Sum of the lateral displacements of the lumped

masses
z Liquid damping ratio
h(x, y, t) Free-surface liquid elevation
u(t) Swinging angle in xy-plane measured clockwise

from vertical y-direction
_u, €u Angular velocity and acceleration
Y Vector of generalized coordinates,

Y= uq1 � � � qn
T

r Liquid density
t Command length
fi Spatial sloshing mode
Fi Mode shape
F Modal matrix
C=ci Vector of principal (decoupled) coordinates
vi Natural frequency of the i th sloshing mode
vn, i,vd, i Undamped and damped natural frequencies
(:) Time derivative, d=dt

294 Transactions of the Institute of Measurement and Control 43(2)


