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Command Shaping for Sloshing
Suppression of a Suspended
Liquid Container
The residuals of liquid free-surface wave oscillations induced by a rest-to-rest crane
maneuver of a suspended liquid container are eliminated using a command-shaped pro-
file. The dynamics of liquid sloshing are modeled using an equivalent mechanical model
based on a series of mass-spring-damper systems. The proposed model considers the
excited frequencies of the container swing motion and liquid sloshing modes. The objec-
tive is to design a discrete-time shaped acceleration profile with a variable command
length that controls the moving crane-jib, while suppressing the sloshing modes. Simula-
tions are conducted to illustrate the command effectiveness in eliminating liquid sloshing
with a wide variation range of system and command-designing parameters; liquid depth,
cable length, command duration, and the employing of higher sloshing modes in repre-
senting the sloshing dynamics. The command sensitivity of the input command to changes
of the system parameters are treated as well. A refined and smooth input command based
on suppressing the residuals of multimodes is also introduced. Furthermore, the com-
mand effectiveness was supported by a comparison with the time-optimal flexible-body
control and multimode zero vibration input shaper. [DOI: 10.1115/1.4047957]

Keywords: vibration control, sloshing suppression, command-shaping, overhead crane,
open-loop control

1 Introduction

Robotic manipulators and overhead, or gantry, cranes are used
extensively to move containers in repeated cycles. Optimal con-
trol techniques are necessary in minimizing residual vibrations
during a move cycle, while minimizing move time. A cycle, or a
point-to-point maneuver, is composed of acceleration, cruising
and deceleration stages. It is only practical if residual vibrations
are dissipated before a second motion is introduced.

Typically, containers are moved with a sufficiently low acceler-
ation, lower than the system’s capability, as to not induce any
vibration; otherwise, the induced vibration will result in idling the
operation while waiting for the vibration to decay. When an over-
head crane is used to transport liquids in point-to-point maneu-
vers, the rapid excitation of the inside liquid induces sloshing
during the maneuvers. Liquid sloshing could cause fatigue on the
container structure leading to accidents. Excessive liquid sloshing
may also cause spillage, more critically, of hazardous substances
such as molten metal. Moreover, excessive sloshing can cause the
system to become unstable. With a proper control technique, the
maneuver can be completed in a shorted time period while main-
taining minimal levels of residual vibrations.

Recently, controlling the oscillations induced by the motion of
a liquid container attracts the attention of many researchers
[1–11]. Using passive methods such as absorbers and baffles to
dissipate sloshing increases the weight and adds complexity to the
overall system [12,13]. Alternatively, there are several active con-
trol techniques, e.g., linear-quadratic-integral, H1, and input
shaping, that have been proposed, simulated, and tested to sup-
press sloshing in a moving liquid-filled container. The require-
ment of liquid-motion sensors renders difficulties in implementing
traditional feedback controllers. Alternatively, without using sen-
sors, input shaping technique was successfully utilized to move
containers with minimal transient and residual liquid oscillations

[5,6,8]. Input shaping is based on convolving a general reference
command signal with sequences of specified timed-impulses that
generates a specially shaped command to reduce residual vibra-
tions. Pioneer works in input shaping techniques are given in
Refs. [14–18]. Input shapers can reside completely outside a con-
trol system and, therefore, can be easily integrated with other con-
trol schemes. The most drawbacks of the input shaping are the
high sensitivity to variations of the modeling errors and system
parameters and the prior knowledge of the system dynamics.

In general, a sloshing problem in containers is highly character-
ized by a nonlinear coupled system [19]. However, under a
horizontal excitation of a rectangular container with small oscilla-
tions, the sloshing dynamics can be modeled based on spring-
mass systems [20]. Yano and Terashima [2] suppressed sloshing
using a feedback controller and an equivalent simple pendulum
system to represent the sloshing dynamics. For a rectangular con-
tainer being moved in a horizontal direction, the induced sloshing
was eliminated using input commands while modeling the
sloshing dynamics using the finite-element method for the
liquid–structure interactions [3] and an equivalent mechanical
model [6]. Hunag and Zaho [11] suppressed sloshing while the
rectangular container is moving along the lateral and transverse
directions. Murthy et al. [5] and AlSaibie and Singhose [8] sup-
pressed sloshing in a suspended container using different input
shaping methods. However, they used the natural frequencies of a
liquid container excited by lateral motion and neglected the rota-
tion effect induced by the crane. Kaneshige et al. [4] utilized notch
filter control to suppress sloshing in an overhead crane system.

The aim of this work is to design a shaped command with
adjustable command length that suppresses the sloshing residuals
of a suspended liquid container. The input command based on a
series of steps is designed to produce fast maneuvering and accu-
rate positioning. Numerical simulations are conducted to illustrate
the command effectiveness and robustness. The variation of sys-
tem parameters such as changing the liquid level and cable length
in the command performance is also addressed. A refined and
smooth input command based on multisteps (introducing higher
sloshing modes) is also proposed for further application. Unlike
the works by Murthy et al. [5] and AlSaibie and Singhose [8]
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where they used the common input shapers, zero-vibration and
zero-vibration-derivative, for reducing the residual sloshing in a
moving container, the proposed command guarantees the elimina-
tion of residual sloshing by using a multisteps input command
(MSIC) that captures the multimodal response of the liquid with
adjustable command length. The effectiveness of the proposed
command was supported by a comparison with the time-optimal
flexible-body control and multimode zero vibration input shaper.

The paper is organized into five major sections. A mathematical
model to simulate the dynamics of the suspended liquid system
under investigation is formulated in Sec. 2. The system constraints
in designing the input command are addressed in Sec. 3. In Sec. 4,
a conducted numerical simulation and its corresponding results
are presented. Finally, the conclusions of this work are given in
Sec. 5.

2 Mathematical Model

A partially filled liquid container conveyed by an overhead
crane is shown in Fig. 1(a). A realistic representation of the liquid
sloshing dynamics inside a rigid-walled container can be
approximated by an equivalent mechanical model consisting of
mass-spring-damper systems. Each of these damped harmonic
oscillators in Fig. 1(b) represents one of the vibratory modes of
the liquid sloshing. The slider (jib) moves horizontally with a pro-
posed predefined acceleration command shaper profile.

The liquid sloshing can be excited by a combination of lateral
and vertical motions due to angular motion. The sloshing dynam-
ics are assumed to be induced only by the lateral motions. For
simplicity, the nonlinearity of sloshing dynamics under combined
excitation including heaving and pitching is neglected.

2.1 Mechanical Model of Sloshing Dynamics. For a linear
planar liquid motion without rotation and with the excitation fre-
quency remote from resonance, an equivalent mechanical model
in the form of a series of mass-spring-damper systems or a set of
simple pendulums in the sense of equal resulting forces and
moments acting on the container can be developed to provide a
realistic representation of the liquid free-surface dynamics
[19,20]. If the container is oscillated near the surface wave reso-
nance frequency, linear modeling is no longer valid and nonlinear

representation must be considered since jumps can be observed
[21].

2.2 Governing Equations. A simplified model of an over-
head crane is shown in Fig. 1. The model consists of a rigid-
walled container of mass mc, width W (in the direction of wave
motion), height H, and mass moment of inertia Ic (with respect to
its own center of mass) that is filled with a liquid of filling level h.
The inside liquid is modeled by a moment of inertia I0 assigned to
a rigidly attached mass, m0, that moves with the container and n
lumped, point, masses mi (i ¼ 1; 2;…; n) attached to the contain-
er’s wall by means of springs and dampers that simulate the
dynamics of the liquid sloshing. Figure 1(b) shows the equivalent
mechanical model that represents the liquid free-surface oscilla-
tions where mi, ki, and ci denote the equivalent mass, the equiva-
lent spring stiffness constant, and the equivalent viscous damper
constant of the ith sloshing mode, respectively; hi denotes the dis-
tance from the liquid center of mass, h=2 (in its undistributed con-
dition) to the equivalent ith mass point, mi; and h0 is the distance
from the liquid center to the rigid mass, m0. The equivalent vis-
cous coefficient ci considers the viscosity of the liquid and the
friction between the liquid and the wall. The parameters
m0; I0; h0;mi; hi; ki; ci of the equivalent mechanical model depend
on the shape of the container, the liquid filling ratio, h/W, of the
container, and the characteristic of the liquid [19]. The advantage
of using an equivalent mechanical model of sloshing dynamics is
to facilitate the designing process in controlling the suspended liq-
uid system. The adopted mechanical model used herein is from
Ref. [20] where the corresponding model parameters are given in
Eq. (A1) in the Appendix A.

The container is attached to a jib by means of a massless cable
of length a. The jib moves in the horizontal direction with acceler-
ation €u tð Þ, while the container swings in the xy-plane with an
oscillation angle h tð Þ. Each lumped mass, mi, moves along the
container-fixed lateral axis with a relative displacement qi tð Þ
(i ¼ 1; 2;…; n) with respect to the container’s wall, Fig. 1(a).
Each coordinate qi represents the motion of the liquid surface cor-
responding to the ith sloshing mode. The elevation of the liquid
free-surface level is given by [11]

g x; y; tð Þ ¼
Xn

i¼1

/i x; yð Þqi tð Þ (1)

Fig. 1 (a) A rigid-walled container filled by a liquid and conveyed by an overhead crane and (b) equivalent
mechanical model of the liquid sloshing modes
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where /i x; yð Þ represents the ith sloshing spatial mode function.
The spillage is most likely to occur at the edges of the container,
i.e., x ¼ 6W=2 and y¼ 0. Therefore, the wave motion of the liq-
uid surface, d tð Þ, as a function of time at the edge is the sum of
the surface wave oscillations of each of the sloshing modes

d tð Þ ¼ g 6W=2; 0; tð Þ ¼
Xn

i¼1

/i 6W=2; 0ð Þqi tð Þ (2)

Upon defining the position vectors of the container’s center of
mass, the liquid fixed-mass, m0, and the ith point mass, mi, taking
the time derivatives to obtain the velocity vectors, stating the
kinetic, potential, and Rayleigh dissipation energies of the liquid
suspended system, and employing Lagrange’s formulation, the
following fully coupled nonlinear differential equations in angular
coordinate, h, and the lateral displacements, qi, were obtained:

Ieq þ
Xn

i¼1

miq
2
i

" #
€h �

Xn

i¼1

mili €qi þ 2
Xn

i¼1

miqi _qi

" #
_h

þ Ml sin h� cos h
Xn

i¼1

miqi

" #
g

¼ Ml cos hþ sin h
Xn

i¼1

miqi

" #
€u (3a)

�li
€h þ €qi � qi

_h
2 þ 2fxi _qi � g sin hþ x2

i qi ¼ �cos h €u for

i ¼ 1; 2;…; n

(3b)

where lc ¼ aþ H=2; l0 ¼ aþ H � h=2þ h0, and li ¼ aþ H
�h=2� hi are the distances from the jib to the container’s center
of mass, the liquid fixed-mass, m0, and the ith lumped mass, mi,
respectively, g is gravitational constant, f and xi are the damping
ratio of the fluid and natural frequency of the mass-spring system,
respectively, and

Ieq ¼ Ic þ mcl2
c þ I0 þ m0l2

0 þ
Xn

i¼1

mil
2
i and

Ml ¼ mclc þ m0l0 þ
Xn

i¼1

mili

The dissipative term 2
Pn

i¼1 miqi _qi
_h in Eq. (3a) represents the

damping force from the liquid into the container’s walls. The
nþ 1 equations of motion, (3), are subjected to the following ini-
tial conditions:

h 0ð Þ ¼ h0; _h 0ð Þ ¼ _h0 (4a)

qi 0ð Þ ¼ qi;0; _qi 0ð Þ ¼ _qi;0 for i ¼ 1; 2;…; n (4b)

where h0 and _h0 are the initial oscillation angle and rotational
speed of the cable, a, and qi and _qi are the initial relative displace-
ment and velocity of the lumped mass mi with respect to the con-
tainer’s wall. For completeness, the initial conditions are included
in the theoretical derivation, even though the proposed command
will be designed to convey the suspended system from its rest
state, i.e., zero initial conditions.

2.3 General Solution of a Multisteps Input Command. The
nonlinear Eq. (3) can be linearized by assuming small oscillation
angle h and small surface wave oscillations, qi. Neglecting the
higher-order terms, Eq. (3) is reduced to

Ieq
€h �

Xn

i¼1

mili €qi þMlgh� g
Xn

i¼1

miqi ¼ Ml €u (5a)

�li
€h þ €qi þ 2fxi _qi � ghþ x2

i qi ¼ �€u for i ¼ 1; 2;…; n

(5b)

with the initial conditions given in Eq. (4). A multisteps input
command of m steps with amplitudes Ai is proposed

€u tð Þ ¼
Xm

i¼1

Ai � Ai�1ð ÞHsi
; with A0 ¼ 0 (6)

where Hsi
¼ H t� sið Þ is the Heaviside function. Substitution of

Eq. (6) into Eq. (5) and using Laplace transform approach give
the general solutions of the multisteps input €u tð Þ

h tð Þ¼
X2nþ2

j¼1

aje
rj tþ

Xm

k¼1

X2nþ2

j¼1

cje
rj t�skð Þ þ c2nþ3

0
@

1
A Ak�Ak�1ð ÞHsk

2
4

3
5

(7)

qi tð Þ ¼
X2nþ2

j¼1

bi;je
rj t

þ
Xm

k¼1

X2nþ2

j¼1

di;je
rj t�skð Þ þ di;2nþ3

0
@

1
A Ak � Ak�1ð ÞHsk

2
4

3
5 for

i ¼ 1; 2;…; n

(8)

where aj; bi;j; cj, and di;j are complex coefficients and rj are the
characteristic polynomials. Appendix B contains the definitions
and expressions of theses coefficients and polynomials.
Appendix C provides the stability proof of the system given in
Eq. (3) based on Lyapunov theorem.

3 Command Shaping

Command shaping, a commonly used input shaping technique,
is an open-loop control technique that is designed to induce mini-
mal transient (when the container is in motion) and residual (when
the container is stopped) liquid oscillations. An input command of
sequence steps can be generated by convolving a step reference
command with a sequence of specified timed impulses. The
parameters of this steps input command, namely, the magnitudes
of the necessary commanded steps Ai and their timing si, are
determined based on the formulated dynamics equations that drive
the jib from one point to another while achieving certain pre-
scribed time domain specifications. The presence of nonlinearities
of the system in Eq. (3) complicates the designing process of the
input command. Therefore, with the fact that sloshing may be
modeled as a multi-mode linear system, Eq. (5) was alternatively
used in designing the input command. Once the input command is
designed, the dynamics responses of the system were obtained
from the nonlinear model, Eq. (3). Throughout the paper, the time
intervals of the acceleration, cruising, and deceleration stages are
denoted, respectively, by ta, tc, and td.

Two important factors should be considered when designing
control commands to suppress liquid oscillations for a system
with sloshing dynamics; number of sloshing modes and liquid
depth. Some applications require only considering the first mode
of sloshing whereas other applications may require the considera-
tion of higher modes. The variation of liquid depth changes the
sloshing frequencies during motion. The effect of retaining differ-
ent sloshing modes and the effect of changing the liquid depth
will be deliberately considered in the subsequent sections.
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3.1 Command Designing. The input shapers are usually
designed from the system natural frequencies and damping ratios.
The unavailability of the latter in Eq. (3) renders impossible to
determine such shaper that produces zero vibrations using tradi-
tional techniques. To ensure having zero residual vibrations at the
end of the acceleration stage, the angle h and the wave surface
amplitude d, Eq. (2), and their derivatives, should be set to zero.
Therefore, the input command profile, €u, is designed by satisfying
the following conditions:

h tað Þ ¼ 0; _h tað Þ ¼ 0; d tað Þ ¼ 0; _d tað Þ ¼ 0;ðta

0

€u ¼ vf ; j€uj � amax (9)

where the first four equality constraints ensure that the system pro-
duces zero vibrations at the end of the acceleration stage; the next
constraint ensures that the jib reaches it maximum velocity vf; and
the inequality constraint ensures that the maximum acceleration
of the input command does not exceed a predefined value, amax.
The input command should utilize the full system acceleration
and velocity capabilities to achieve an optimum maneuver time,
T ¼ ta þ tc þ td. The equality constraints in Eq. (9) produce 2nþ
3 equations. Knowing that to satisfy d tað Þ ¼ 0 all n wave surface
motions qi tað Þ need to be diminished according to Eq. (2).

The fundamental idea of input shaping is to find the switching
intervals and their corresponding impulse magnitudes that are
optimal based on the existing natural frequencies and damping
ratios of the system [18]. Unlike the classical input shaping tech-
niques, this work proposes a multisteps input command with
piecewise constant time segments, Ds, where the time segment,
i.e., command length, is independent of the system natural fre-
quencies and the damping ratio. Therefore, one can select an
appropriate command length to compensate between the maneu-
ver time and transient oscillation. However, the shortest command
length is limited by the maximum allowable command amplitude.

In order to satisfy all the equality constraints in Eq. (9) and in
addition to ensure that jAij < amax, at least m ¼ 2nþ 3 steps are
needed. Substituting t¼ ta into Eqs. (7) and (8) and their time
derivatives with the assumption of zero initial conditions, and
integrating Eq. (6) from 0 to ta yield a linear system of
m ¼ 2nþ 3 equations, Ac ¼ b, that can be solved for the steps
amplitudes Ai that satisfy all the equality constraints in Eq. (9).
The m�m matrix A and m-vectors c and b are defined as follows:

A 1; kð Þ ¼
X2nþ2

j¼1

cje
rj ta�skð Þ þ c2nþ3

A 2; kð Þ ¼
X2nþ2

j¼1

rjcje
rj ta�skð Þ

A 2iþ 1; kð Þ ¼
X2nþ2

j¼1

di;je
rj ta�skð Þ þ di;2nþ3

(10a)

A 2iþ 2; kð Þ ¼
X2nþ2

j¼1

rjdi;je
rj ta�skð Þ i ¼ 1; 2;…; n

A 2nþ 3; kð Þ ¼ m� k þ 1 k ¼ 1; 2;…;m

c ¼ A1A2 � A1 � � �Am � Am�1

� �T

(10b)

b ¼ 0 0 � � � 0 vf =Ds
� �T

(10c)

The magnitudes of the steps in the deceleration phase are basically
the inversion of those in the acceleration stage. To ensure that the
jib moves a certain traveled distance, d, the cruising distance is
adjusted once the traveled distance in the acceleration and decel-
eration stages is determined. The total traveled time, T, is then

evaluated by numerically integrating the velocity profile of the
input command.

The magnitudes of the steps determined from Eq. (10) are for
the case that the suspended container was conveyed from its rest
position to a final rest position. If the water level and swing angle
can be recorded in a real-time measurement, the vector b should
be adjusted by adding the first term in the Eqs. (7) and (8). The
two constants aj and bi;j are both functions of the initial conditions
embedded in the constants A, B, Ci, and Di and the polynomials
l sð Þ and �i sð Þ as defined in Appendix B. If a shaped command
designed based on zero initial conditions was used to convey the
suspended system with nonzero initial states, these initial disturb-
ance will remain as residual vibration at the end of the maneuver
(as will be shown later).

3.2 Time-Optimal of Rigid-Body Motion. For comparison,
the response of time-optimal of rigid-body (TORB) is considered
as the reference case of the unshaped (uncontrolled) command.
TORB is the fastest possible input command which utilizes the
maximum acceleration to move the jib from its rest position to its
maximum cruising speed at the end of the acceleration stage.
Once the jib covers the cruising stage, the TORB command will
decelerate the jib using its maximum deceleration value to stop
the jib at the target position. The time intervals of the acceleration
and deceleration stages are equal to ta ¼ td ¼ vf =amax; the time
interval of the cruising stage is tc ¼ d=vf � vf =amax; and there-
fore, the total traveled time is T ¼ d=vf þ vf =amax.

4 Simulation Results

For the simulation experiment, the kinematics of the jib, con-
tainer dimensions, and liquid properties are listed in Table 1. The
equivalent lumped masses, spring constants, and damping con-
stants of the vibratory modes of the liquid sloshing are obtained
from Eqs. (A1) in Appendix A. The water damping ratio is taken
as f ¼ 0:01 based on the experimentally determined values [2,6,8]
and approximation of an analytical expression [22]. Different liq-
uid filling ratios, h/W, were used to ascertain the effect of liquid
levels in the controlling techniques. The coupled nonlinear differ-
ential Eq. (3) were solved numerically.

4.1 Response of Time-Optimal of Rigid-Body. The dynam-
ics responses, h tð Þ and d tð Þ, of the suspended system subjected to
TORB motion using the nonlinear equations of motion, Eq. (3),
and the linearized form, (5), are illustrated in Fig. 2 for different
sloshing modes. For the given jib kinematics in Table 1, the time
interval of TORB motion is T ¼ 2:33 s. The maximum swing
angle of the TORB (uncontrolled shape) is within the acceptable
range of the linearity assumption. Therefore, the nonlinearity
behavior of the suspended system can be neglected and the
dynamics of the system can be obtained from the linear form,
Eq. (5).

Table 1 Jib kinematics, container dimensions, and liquid prop-
erties of the numerical simulation

Container dimensions Value Container properties Value

Width, W (cm) 25 Mass, mc (kg) 10
Height, H (cm) 50 Mass moment
Cable length, a (cm) 30 of inertia, Ic ðkg �m2Þ 0.01

Jib kinematics Liquid (water) parameters
Travel distance, d (m) 0.6 Mass density, q ðkg=m3Þ 1000
Maximum velocity, vf (m/s) 0.3 Damping ratio, f 0.01
Maximum acceleration,
amaxðm=s2Þ

0.9 liquid filling levels,
h (cm)

2.5, 5, 15, 20
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4.2 Variations of System and Command-Designing
Parameters. For certain jib parameters and container dimensions,
the determination of the magnitudes of the equally spaced steps
depends on the number of sloshing modes, n, liquid filling ratio,
h/W, step size interval, Ds, and the cable length, a.

4.2.1 Variation of Time-Step. For a certain number of slosh-
ing modes, the selection of a time-step, Ds, is constrained by the
maximum jib acceleration, amax, and the total traveled distance, d.
As the time-step decreases, the amplitude of input acceleration
increases, which may exceed the predefined maximum

acceleration, amax, and will result in higher sloshing waves. How-
ever, increasing the time-step will increase the distance traveled
in the acceleration and deceleration stages, which may exceed the
predefined total distance, d. Therefore, there is a range of time-
steps satisfying the system constraints. A time-step increment of
0.01 s was used in this analysis. The reason of using this value of
increment is to represent the sampling time limitations of the
actuator’s hardware [2]. For a single sloshing mode with
h=W ¼ 0:1, the smallest time-step is Ds ¼ 0:24 s and the
corresponding maneuver time is T ¼ 3:19 s. The corresponding
magnitudes of the multisteps shaped command and the root-mean-

Fig. 2 Dynamic responses of TORB command when using (a) single, (b) three, and (c) five sloshing modes, and (d) TORB
command profile (h/W 5 0:1)

Table 2 Amplitudes of the input steps, the RMS wave surface oscillations, and the total maneuver time using different time-steps,
Ds, single sloshing mode and h=W50:1

Ds ¼ 0:24 s and ta ¼ 1:2 s
Amplitudes, Ak ðm=s2Þ 0.6544 –0.4807 0.8958 –0.4412 0.6218 W (mm) 3.53
Times, sk (s) 0.00 0.24 0.48 0.72 0.96 T (s) 3.19

Ds ¼ 0:30 s and ta ¼ 1:5 s

Amplitudes, Ak ðm=s2Þ 0.2656 0.1149 0.2421 0.1283 0.2491 W (mm) 1.71
Times, sk (s) 0.00 0.30 0.60 0.90 1.20 T (s) 3.49

Ds ¼ 0:35 s and ta ¼ 1:75 s
Amplitudes, Ak ðm=s2Þ 0.1531 0.1904 0.1760 0.1954 0.1421 W (mm) 0.97
Times, sk (s) 0.00 0.35 0.70 1.05 1.40 T (s) 3.74
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square (RMS) of the wave surface oscillations, W, for three time-
steps Ds ¼ 0:24; 0:30, and 0:35 s are listed in Table 2. The dynam-
ics response using the nonlinear form of the governing Eq. (3) and
the command acceleration and velocity profiles are illustrated in
Fig. 3. From Table 2, increasing the time-steps from 0.24 to 0.30 s
increases the maneuver time, T, from 3.19 to 3.49 s (9.4%) and
results in reduction of the wave oscillations, W, from 3.53 to
1.71 mm (52%).

4.2.2 Variation of Liquid Depth. The sloshing frequencies of
the inside liquid depend on the liquid-filling level to the width of
the container, h/W, according to Eq. (A1e) in Appendix A. For a
single sloshing mode and the smallest time step-size , the corre-
sponding magnitudes of the multisteps shaped command, the
RMS of the wave surface oscillations, and the total traveled time
for h/W¼ 0.1, 0.2, 0.6, and 0.8 are listed in Table 3. Figure 4
shows the variation of the swing angle, the liquid free-surface

Fig. 3 Dynamic responses of different input-command profiles designed based on different time-steps, Ds and single slosh-
ing mode (h/W 5 0:1): (a) swing angle, (b) free-surface wave motion, (c) jib acceleration, and (d) jib velocity

Table 3 Amplitudes of the input steps, the RMS wave surface oscillations, and the total maneuver time for different liquid filling
ratios, h/W, and single sloshing mode

h=W ¼ 0:1; Ds ¼ 0:24 s and ta ¼ 1:2 s
Amplitudes, Ak ðm=s2Þ 0.6544 –0.4807 0.8958 –0.4412 0.6218 W (mm) 3.53
Times, sk (s) 0.00 0.24 0.48 0.72 0.96 T (s) 3.19

h=W ¼ 0:2; Ds ¼ 0:21 s and ta ¼ 1:05 s
Amplitudes, Ak ðm=s2Þ 0.7512 –0.0857 0.0777 –0.0172 0.7027 W (mm) 1.29
Times, sk (s) 0.00 0.21 0.42 0.63 0.84 T (s) 3.04

h=W ¼ 0:6; Ds ¼ 0:20 s and ta ¼ 1:0 s
Amplitudes, Ak ðm=s2Þ 0.7846 0.1289 –0.3493 0.1993 0.7365 W (mm) 0.23
Times, sk (s) 0.00 0.20 0.40 0.60 0.80 T (s) 2.99

h=W ¼ 0:8; Ds ¼ 0:20 s and ta ¼ 1:0 s
Amplitudes, Ak ðm=s2Þ 0.7782 0.0937 –0.2642 0.1587 0.7335 W (mm) 0.25
Times, sk (s) 0.00 0.20 0.40 0.60 0.80 T (s) 2.99
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motion, and the acceleration and velocity profiles of the shaped
commands. The increase of the liquid depth increases the maxi-
mum swing angle and significantly reduces the liquid surface
wave motion. The dynamics response and input command profile
of h=W ¼ 0:6 and 0.8 are almost identical since the sloshing fre-
quencies do not significantly change after the liquid depth reaches
a certain critical value. Therefore, it is necessary to employ con-
trolling techniques in conveying a container with shallow liquid
depth, h=W � 0:2.

4.2.3 Variation of Cable Length. The changing of the cable
length, a, that attaches the container to the moving jib will mostly
alter the swing frequency corresponding to the angular motion, h.
The increasing in the cable length will slightly increase the mini-
mum allowable maneuver time required to satisfy the system con-
straints. Even though the amplitudes of the input steps were
adjusted, the trend of the dynamic response is similar to the one
shown in Fig. 3.

4.2.4 Employing Higher Sloshing Modes. The simplicity of
designing an input command with a single sloshing mode comes
with the cost of increased sensitivity to modeling errors and
parameters variations. All the previous analyses were based on
modeling the sloshing dynamics using single sloshing mode,
n¼ 1. Using a liquid depth ratio of h=W ¼ 0:1, the dynamic

response and input command profile when employing higher
sloshing modes in command designing are illustrated in Fig. 5.
Adding sloshing modes in command designing increases the num-
ber of steps in the shaped command and results in a higher maneu-
ver time. The free-surface motion of the liquid, d, is sensitive to
how many sloshing modes are used in designing, where in con-
trast there is no noticeable change in the swing angle, h. The total
maneuver time for a single, three, five, and seven sloshing modes
are 3.19, 3.15, 3.28, 3.34 s, respectively. Using three to five slosh-
ing modes are quite sufficient in representing the sloshing dynam-
ics of the inside liquid. Suppressing residual vibrations at higher
sloshing modes has a minor improvement while rendering a
slower response.

4.3 Transient Sloshing Oscillation Versus Maneuver Time.
The variation of the RMS of the wave surface oscillations versus
the maneuver time is shown in Fig. 6(a) when five sloshing modes
are used in modeling the sloshing dynamics. The downward trends
of the wave motion with the maneuver time are steep for a shallow
liquid-filled container (h=W � 0:2) compared to the deep liquid-
filled containers. For instance, the smallest maneuver time and its
corresponding largest RMS of the wave motion for liquid depth
ratio of 0.1 are 3.23 s and 2.58 mm, respectively. In contrast, to
ensure that the jib utilizes the full system capabilities, the smallest
maneuver time and its corresponding largest RMS of the wave

Fig. 4 Dynamic responses of different input-command profiles designed based on different liquid depth ratios, h / W, a single
sloshing mode, and the shortest maneuver time: (a) swing angle, (b) free-surface wave motion, (c) jib acceleration, and
(d) jib velocity
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Fig. 5 Dynamic responses of input-command profiles designed based on different sloshing modes, n, and the shortest
maneuver time (h/W 5 0:1): (a) swing angle, (b) free-surface wave motion, (c) jib acceleration, and (d) jib velocity

Fig. 6 (a) The variation of the wave surface oscillations versus the maneuver time and (b) the reduction of the wave motion
and the increase in maneuver time with respect to TORB command (n 5 5)

121003-8 / Vol. 142, DECEMBER 2020 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/142/12/121003/6561489/ds_142_12_121003.pdf by Kuw

ait U
niversity user on 01 April 2022



Fig. 7 The exerted force on the container’s wall from the water’s weight and the induced sloshing force: (a) different sloshing
modes; h=W 5 0.6 and (b) different water depths; n 5 5

Fig. 8 The free-surface wave motion of higher sloshing modes with input command designed based on (a) 5, (b) 9, (c) 13,
and (d) 17 steps (h/W 5 0:1)
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motion for liquid depth ratio of 0.1 are 3.90 s and 0.73 mm,
respectively. Therefore, increasing the operational time 21%
(3.23 s versus 3.90 s) results of 72% (2.58 versus 0.73 mm) reduc-
tion in the induced transient sloshing. However, the reductions of
the wave motion in a deep liquid-filled container are insignificant.
Figure 6(b) illustrates the reduction of the wave motion versus the
increase in the maneuver time compared to the TORB command.
Employing command shaping reduces the induced sloshing from
30 to 40% while making the system 30% slower than the TORB
for liquid depth ratios from 0.2 to 0.6. For a liquid depth ratio of
0.1, the shaped command reduces sloshing 75% while rendering
the response 40% slower than the TORB.

4.4 Structural Fatigue. The total forces exerted into one of
the walls from the water’s weight and the induced sloshing forces
can be computed using Newton’s second law as

Fx tð Þ ¼ Wf sin hþ 1

2

Xn

i¼1

kiqi þ ci _qi (11)

Figure 7 shows the time response of the exerted force on one of
the container’s wall. The negative force can be interpreted as the
force is now applied to the other container’s wall. It is clear from

the response that the forces are fluctuating, i.e., time-varying load-
ing, and hence it will induce structural fatigue. The shaped com-
mand reduces the transient force, and hence decreases the induced
midrange and alternating forces. Furthermore, the force-free
region reduces the number of induced cycles, and hence increases
the cycle life of the container. Even though the force magnitude
seems to be relatively small for the case of the prototype crane
with small dimensions and input parameters, the force magnitude
will be higher for an actual crane operating in a real-life
application.

4.5 Higher Modes. Since the inside liquid is basically a con-
tinuous system that can be modeled by a sufficient n multidegree-
of-freedom systems, the input command can be designed using a
large number of lumped masses. Naturally, the larger the number
of lumped masses used in the equivalent mechanical model, the
higher the accuracy of the resulting sloshing analysis. To further
assess the effect of sloshing modes in designing a command, the
influence of the higher modes in a command designed using lower
modes is illustrated in Fig. 8. Figure 8(a) shows the response of
higher sloshing modes, n¼ 3, 5, and 7 subjected to a command
that was designed using only a single mode, n¼ 1 (five steps).
Figures 8(b)–8(d) show the response of higher sloshing modes
when subjected to an input predesigned for a lower mode. It is
worth noting that the command designed based on seven sloshing

Fig. 9 Dynamic responses of input-command profile designed based on n 5 30 sloshing modes (h/W 5 0:1): (a) swing angle,
(b) free-surface wave motion, (c) jib acceleration, and (d) jib velocity
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modes guarantees the elimination of the residual vibrations from
the higher modes. However, using five sloshing modes is quite
sufficient in reducing the residual vibration from the unmodeled
modes.

The input command becomes smoother with the increasing of
the employed steps, i.e., retaining higher sloshing modes in com-
mand designing. Figure 9 illustrates the dynamics response and
command profile when n¼ 30 sloshing modes and Ds ¼ 0:03 s
were used for a liquid depth ratio of h=W ¼ 0:1. The variations of
swing angle and free-surface wave motion are quite similar with
those using lower modes, Fig. 5. However, the command profiles,
velocity and acceleration, are much smoother, Figs. 9(c) and 9(d).

The shape of the command profile in Fig. 9(c) suggests using a
sine wave command. Using the following general sine wave input
command:

€u
�
tÞ ¼

Xm

k¼1

Ak sin Xktþ /kð Þ (12)

where Ak, Xk, and /k are fitting parameters that should be deter-
mined in a linear-square sense. For n¼ 30 sloshing modes, there
are m¼ 63 steps in Fig. 9(c) that can be used to determine the fit-
ting parameters. Using these magnitudes of the 63 steps, 18 fitting
parameters (m¼ 6 in Eq. (12)) were determined and listed in
Table 4. The dynamics response of the suspended liquid container
for a sine waves input of Eq. (12) and the parameters listed in
Table 3 are shown in Fig. 10. The responses from the steps and
sine waves are almost identical. Even though the fitting parame-
ters were based on the steps magnitudes and not on the system
constraints, the response of the sine waves produces zero residual

Table 4 Amplitudes, forcing frequencies, and phase angles of the smooth sine waves command given in Eq. (12)

k ¼ 1 2 3 4 5 6

Amplitudes, Ak ðm=s2Þ 0.277 0.167 0.253 0.106 0.0414 0.02535
Forcing frequency, Xk (rad/s) 0.948 7.685 5.946 1.804 2.491 11.17
Phase angle, /k (rad) 1.476 2.045 1.861 –2.106 –0.154 –1.012

Fig. 10 The comparison between 63 steps and six sine waves command on the dynamics responses (h/W 5 0:1): (a) swing
angle, (b) free-surface wave motion, (c) jib acceleration, and (d) jib velocity
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vibrations at the end of the acceleration stage. Furthermore, the
jib velocity of the sine wave command reaches the maximum jib
velocity at the end of the acceleration stage.

4.6 Comparison With Other Input Shaping Techniques.
The proposed multisteps input command is compared with the
zero vibration shapers for a multimode system (ZVMM) and the
time-optimal flexible-body control (TO ZV), which is character-
ized by utilizing the full acceleration capability of the actuator
and rapid switching of the command between its maximum and
minimum acceleration values [18].

4.6.1 Multimode Zero Vibration Shapers. The zero vibration
(ZV) shaper for a single mode system is based on convolving a
sequence of impulses with system input to generate an output with
zero residual vibration [14,17]. If these impulses are designed for
each of the vibrational modes independently, they can be con-
volved to form a sequence, which moves a multimode system
without residual vibration. The convolving of multiple mode
sequences creates packed impulses that are difficult to implement
in real-time, increases the time required to modify the input, and
therefore, decreases in servorate performance [15]. Hence, the
multiple mode sequences can be alternatively generated by direct
solution of the following constraint equations:

Xm

k¼1

Akefjxj tk sin xj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

j

q
tk

� �
¼ 0; for j ¼ 1; 2;…;N (13a)

Xm

k¼1

Akefjxj tk cos xj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

j

q
tk

� �
¼ 0; for j ¼ 1; 2;…;N (13b)

Xm

k¼1

Ak ¼ amax (13c)

where Ak is the impulse amplitude and tk is the time at which the
impulse occurs, m ¼ N þ 1 is the number of required impulses,
and N is the number of modes in the vibrational system. The two
first equations guarantee the elimination of the residual vibrations
where the last equation ensures that the none of the generated
impulses exceeds the input limitation, e.g., maximum accelera-
tion. It is clear that there are 2m ¼ 2N þ 2 unknowns of Ak

and tk in 2N þ 1 equations; therefore, t1 can be set to zero
(origin specification). The nonlinear equations were solved using
the numerical optimization fmincon in MATLAB to find the magni-
tudes and times of the impulses that minimizes (not theoretically
eliminates) the residual vibrations with the shortest maneuver
time.

Fig. 11 Comparison between the MSIC and ZVMM with their corresponding dynamic responses (h/W 5 0:1 and n 5 5): (a)
swing angle, (b) free-surface wave motion, (c) jib acceleration, and (d) jib velocity
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Figure 11 shows the responses of the suspended system with
water depth ratio of h=W ¼ 0:1 and negligible damping (worst-
case scenario) when employing the proposed MSIC and ZVMM.
The jib kinematics for this comparison are amax ¼ 0:3 m=s2;
vf ¼ 1 m=s, and d ¼ 5 m. It is clear from Figs. 11(c) and 11(d)
that the ZVMM does not utilize the full actuator capability. For
this reason, the transient vibration amplitudes of ZVMM are less
than the induced amplitudes from MSIC.

4.6.2 Time-Optimal Flexible-Body Control. The command
profile of a time-optimal flexible-body control can be written in
the form of Eq. (6) as

€u tð Þ ¼ amaxHs1
þ 2amax

Xm

i¼2

�1ð Þi�1
Hsi

(14)

where the time locations si are determined by imposing the condi-
tions of Eq. (9). Due to the transcendental nature of these con-
straints, the equations may have none, one, or many solutions that
satisfying the constraint equations while ensuring the jib velocity
and the traveled distance are not exceeding the predefined values
vf and d, respectively. The desired time-optimal command was
found using numerical optimization. Figure 12 shows a compari-
son between the time-optimal flexible-body control (denoted as

TO ZV) and the multisteps input command (denoted as MSIC).
Even though the TO ZV has a relatively smaller maneuver time
compared to the MSIC, the TO ZV does not guarantee the elimi-
nation of the residual vibrations from the higher modes,
Figs. 12(a) and 12(b).

Furthermore, the optimal time locations si of the ZVMM and
TO ZV may not be within the sampling time of the actuator’s
hardware. The transient oscillations are greater for the TO ZV. It
is worth noting that it was easy to implement and designed the
shaped MSIC, which is based on a system of simultaneous linear
equations, Eq. (10), than designing ZVMM or TO ZV that
requires optimization and results of time optimal locations that
could not be practically implemented. Given the numerous advan-
tages provided by the proposed MSIC in suppressing the residual
sloshing, it provides an attractive alternative to the ZVMM and
TO ZV commands.

4.7 Sensitivity Analysis. For completeness, a parametric sen-
sitivity analysis is conducted by designing a command input pro-
file assuming certain values of the system parameters and then
applying it to models with different parameter values. The slosh-
ing frequencies of the suspended system are changing during
motion due to the changes of the liquid depth. The robustness test
based on observing the residual vibrations at different liquid

Fig. 12 Comparison between the MSIC and TO ZV with their corresponding dynamic responses using different values of the
sloshing modes (h/W 5 0:1): (a) swing angle, (b) free-surface wave motion, (c) jib acceleration, and (d) jib velocity
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depths while fixing the input command represents a practical sce-
nario that captures the command performance with the varying
liquid depth during the maneuver. The vibration amplitude at the
end of the command interval (acceleration stage) is computed as

Vib:Amp: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h tað Þ2 þ

_h tað Þ
xn;1

 !2
vuut þ 1

h

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi tað Þ2 þ

_qi tað Þ
xn;iþ1

� �2
s

(15)

Fig. 13 Sensitivity analysis of the proposed input commands to the changes of liquid depth and cable length for different
sloshing modes, n, and command interval, ta: (a) hm 5 25 mm (h=W 5 0.1) and a 5 0.3 m, (b) h 5 25 mm (h=W 5 0.1) and
am 5 0.3 m, (c) hm 5 50 mm (h=W 5 0.2) and a 5 0.3m, (d) h 5 50 mm (h=W 5 0.2) and am 5 0.3 m, (e) hm 5 100 mm (h=W 5 0.4) and
a 5 0.3m, and (f) h 5 100 mm (h=W 5 0.4) and am 5 0.3 m
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where xn;i is the system natural frequencies obtained from the
characteristic polynomial Eq. (B3). The percentages of the resid-
ual vibrations which is the amount of residual vibration ampli-
tudes when using the shaped command divided by the amplitudes
of residual vibrations when using TORB versus the changes of the
cable length and liquid depth are illustrated in Fig. 13. The robust-
ness is measured quantitatively by measuring the width of the sen-
sitivity curve at some low vibration level (shaded area represents
5% vibration tolerance).

For instance, using a shaped command designed based on a
cable length of 0.3 m and a modeled depth of hm¼ 25 mm
(h=W ¼ 0:1), the percentage of the numerically simulated residual
vibration amplitude when the liquid depth varies 630% from its
modeled depth, i.e., 0:7 � ha=hm � 1:3 is plotted in Fig. 13(a) for
different sloshing modes and command intervals. The command
becomes less sensitive to the changes of liquid depth with the
increasing in the command interval. The robustness of the shaped
command with a command interval of 1.95 s is ha=hm > 0:88. The
sensitivity when using different sloshing modes becomes coinci-
dent with each other with the increasing in the command interval.
The robustness is increased for deep liquid depths, Figs. 13(c) and
13(e). A designed input command is expected to give inferior per-
formance when the modeled depth, hm, is smaller than the actual
operating depth, ha.

The sensitivity analysis of the input commands to the changes
in cable length was also conducted. Using a shaped command
designed based on a cable length of am ¼ 0:3 m and different
water depths h ¼ 25 mm (h/W¼ 0.1), 50 mm (h=W ¼ 0:3), and
100 mm (h=W ¼ 0:4), the percentages of the numerically simu-
lated residual vibration amplitude when the cable length varies
630% from its modeled length, i.e., 0:7 � aa=am � 1:3 are plot-
ted in Figs. 13(b), 13(d), and 13(f) for different sloshing modes
and command intervals. The shaped command is more sensitive to
the changes of cable length for a shallow liquid depth
(h=W ¼ 0:1) compared to the deep liquid depths (h=W � 0:2).
The sensitivity curves for different liquid depths are similar since
changing the cable length will mainly alter the swinging
frequency.

4.8 Initial Disturbance. All the previous analyses were
based on assuming zero initial states. Therefore, to assess the
effect of the initial disturbances in the command performance, the
shaped commands designed based on zero initial conditions are
used to command a system with initial disturbances. The residuals

of the numerically simulated vibration amplitudes when the sys-
tem was disturbed by either an initial swing angle, �2 deg � h0 �
2 deg or liquid motion amplitude, q10, within 10% of its nominal
depth, are plotted in Fig. 14. The initial disturbance does not
affect the command performance in eliminating the residual vibra-
tion as illustrated in Fig. 14. It is clear that the shaped command
at the end of the acceleration stage will neither eliminate the ini-
tial disturbance nor induce any additional residual vibration. This
analysis represents a practical scenario when a shaped input pro-
file is used in commanding a system which is not completely sta-
tionary. This supports the stability of the shaped command that its
performance in eliminating the vibration residuals is not degraded
with the existence of initial system disturbances.

5 Conclusions

A dynamical model for an overhead crane conveying a sus-
pended liquid container with multiple sloshing modes has been
presented. The response due to the sloshing modes is highly
dependent on the ability of keeping the container free from vibra-
tions. A shaped command that consisted of a series of steps was
designed to target the system’s dynamical behavior and eliminate
the residual sloshing to achieve rest-to-rest maneuver. Even
though the input command slows down the system and increases
the total traveled time, the reduction of the liquid transient and
residual oscillations during the overall motion is significant. Sup-
pressing unwanted oscillations at higher sloshing modes has a
minor improvement while rendering a slower response. The effec-
tiveness of the proposed input command was demonstrated using
numerical simulation. The proposed command considers the effect
of liquid damping, utilizes the full capabilities of the system input
(unlike traditional zero vibration shaper), and provides adjustable
command length (unlike time-optimal flexible-body control) that
can be selected based on the actuator’s sampling time. The robust-
ness of the proposed input command to suppress sloshing over a
range of liquid depths and cable lengths was tested using sensitiv-
ity analyses. These analyses suggest to understate the liquid depth
when designing an input command. Command shaping is sensitive
to the changes in the liquid depth for a shallow liquid depth,
h=W � 0:2. In addition to eliminating the residual sloshing, the
increasing of the adjustable command length decreases the tran-
sient sloshing amplitude and enhances the robustness of the
shaped command. Lowering the transient sloshing reduces opera-
tional risks when conveying hazardous liquids, while eliminating

Fig. 14 Residual vibration amplitude when the system subjected to an initial disturbance in the form of (a) h0 and (b) q10

while using different sloshing modes and different command intervals (h/W 5 0:2)
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residual sloshing renders efficient and accurate operations and
reduces the maneuver time.

Unlike the previous works in Refs. [5], [6], and [8] where input
shapers are designed based on the natural frequencies obtained
from Graham’s model, the proposed command considers the
effect of swing motion on the sloshing frequency. The proposed
multisteps input command was capable of eliminating the residual
vibration amplitudes regardless of the number of modes. Several
remarks should be considered when designing an input command
for suppressing sloshing in moving containers: (a) the necessity of
employing controlling techniques in a shallow liquid depth,
h=W � 0:2, (b) at least three sloshing modes should be used when
modeling the sloshing dynamics, (c) the command duration, Ds,
should be selected to compensate between the operational speed,
robustness, and the desired transient reduction in the wave motion,
and (d) the fluid depth should be understated in command
designing.

The problem of the input command sensitivity can be tackled
by adding extra constraints in the command designing such as set-
ting the derivative of the residual vibrations with respect to a cer-
tain model parameter, e.g., natural frequency, to zero. It is also
possible to use a larger number of steps, more than the minimum
number m ¼ 2nþ 3 that is required to satisfy the rest-to rest
maneuvers, where the excess can be used to enhance robustness.
Furthermore, one also could impose an additional constraint or
select an appropriate command duration that limits the maximum
free-surface wave motion to be lower than a certain predefined
value. The latter constraint is useful for applications that prevents
spillage of hazardous material during motion of partially filled
containers. This is also can be achieved by retaining more steps
and determining the values of the excess steps by optimizing the
maximum wave surface motion. Since the proposed input com-
mand was designed based on the linear model; for higher speeds,
the nonlinear model should be used in command designing.
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Nomenclature

a ¼ length of the rigid link
aj; bi;j; cj; di;j ¼ complex coefficients of the general solution of h

and q1

A ¼ coefficient matrix
A;B;Ci;Di ¼ constants which are functions of initial conditions

Ai ¼ amplitudes of input shaped command
c ¼ vector of input amplitudes,

c ¼ A1 A2 � A1 � � � Am � Am�1

� �T

ci ¼ equivalent viscous damper constant of the ith
sloshing mode

d ¼ travel distance
g ¼ gravitational constant, g ¼ 9:81 m=s2

h ¼ liquid filling level
H ¼ container height
hi ¼ distance from liquid center of gravity, h=2, to the

equivalent ith mass point, mi

h0 ¼ distance from liquid center of gravity, h=2, to the
liquid rigid mass, m0

Hsi
¼ heaviside function, Hsi

¼ H t� sið Þ
Ic ¼ mass moment of inertia of the container

Ieq ¼ equivalent mass moment of inertia,
Ieq ¼ Ic þ mcl2

c þ I0 þ m0l2
0 þ

Pn
i¼1 mil

2
i

I0 ¼ mass moment of inertia of the liquid rigid mass,
m0

ki ¼ equivalent spring stiffness constant of the ith
sloshing mode

lc ¼ distance from jib to container’s center of mass,
lc ¼ aþ H=2

li ¼ distance from jib to ith lumped mass, mi,
li ¼ aþ H � h=2� hi

l0 ¼ distance from jib to liquid fixed-mass, m0,
l0 ¼ aþ H � h=2þ h0

m ¼ number of steps in the shaped command
mc ¼ mass of the container
mf ¼ total liquid mass, mf ¼ qWh ¼

Pn
i¼0 mi

mi ¼ equivalent mass of the ith sloshing mode
m0 ¼ rigid mass of the fixed liquid

n ¼ number of liquid sloshing modes
qi ¼ lateral displacement of the lumped mass mi, i.e.,

surface wave oscillation
_qi; €qi ¼ lateral velocity and acceleration of the lumped

mass mi

t ¼ time coordinate
T ¼ total traveled (maneuver) time, T ¼ ta þ tc þ td

ta; tc; td ¼ time interval of acceleration, cruising, and decel-
eration stages, respectively

u; _u; €u ¼ jib horizontal displacement, velocity, and
acceleration

W ¼ container width
f ¼ liquid damping ratio
g ¼ liquid free-surface elevation
h ¼ swing angle in xy-plane measured clockwise from

vertical y-direction
_h; €h ¼ angular velocity and angular acceleration

q ¼ liquid density
si ¼ time of the amplitudes of input shaped command
/i ¼ mode shape of the ith sloshing mode
xi ¼ natural frequency of the ith sloshing mode
xn ¼ natural frequency of the liquid suspended system
_ð Þ ¼ time derivative, d/dt

Appendix A: Equivalent Mechanical Model Parameters

The model parameters of a two-dimensional rectangular rigid-
walled container of width W (in the direction of wave motion) and
height H with a liquid filling level h are given by [20]

mi ¼
8mf

p3

tanh 2i� 1ð Þph=W
� �
2i� 1ð Þ3h=W

(A1a)

hi

h
¼ 1

2
� tanh 2i� 1ð Þph=2W

� �
2i� 1ð Þph=2W

(A1b)

ki ¼ 8mf g
tanh2 2i� 1ð Þph=W

� �
p2 2i� 1ð Þ2h

(A1c)

ci ¼ 2fximi (A1d)

xi ¼
ffiffiffiffiffi
ki

mi

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pg

W
2i� 1ð Þtanh 2i� 1ð Þ ph

W

� �s
(A1e)

m0 ¼ mf �
Xn

i¼1

mi (A1f )

h0 ¼ �
1

m0

Xn

i¼1

mihi (A1g)

I0 ¼ IF � m0h2
0 �

Xn

i¼1

mih
2
i (A1h)
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IF ¼
mf

12
h2 � 3W2 þ 768W3

p5h

Xn

i¼1

tanh 2i� 1ð Þph=2W
� �

2i� 1ð Þ5

" #
(A1i)

where mi, ki, and ci i ¼ 1; 2;…; nð Þ denote the equivalent mass,
equivalent spring stiffness constant, and equivalent viscous
damper constant of the ith sloshing mode, respectively; hi denotes
the distance from the liquid center of gravity, h=2, to the equiva-
lent ith mass point, mi; m0 and I0 denote the rigid mass and mass
moment of inertia of the fixed liquid that moves with the con-
tainer; h0 is the distance from the liquid center to the rigid mass,
m0; mf ¼ qWh ¼

Pn
i¼0 mi denotes the total liquid mass in the

container; xi corresponds to the natural frequency of the ith slosh-
ing mode of a liquid surface when the rectangular container is
only moved in the lateral direction; f is the liquid damping ratio;
q is the liquid density; and g is the gravitational acceleration.

Appendix B: Constants and Polynomial Expressions in

the General Response Solution

The complex coefficients aj; bi;j; cj, and di;j for j ¼ 1; 2;…;
2nþ 2 in Eqs. (7) and (8) are given by

aj ¼
Aþ

Pn
k¼1

Ckmklk

Ieq �
Pn
k¼1

mkl2k

Q2nþ1

k¼1

rj � lkð Þ

Q2nþ2

k ¼ 1

k 6¼ j

rj � rkð Þ
(B1a)

bi;j ¼
Ali þ CiIeq þ

Pn
k¼1

mklk liCk � Cilkð Þ

Ieq �
Pn
k¼1

mkl2k

Q2nþ1

k¼1

rj � �i;kð Þ

Q2nþ2

k ¼ 1

k 6¼ j

rj � rkð Þ
; for

i ¼ 1; 2;…; n

(B1b)

cj ¼
Ml �

Pn
k¼1

mklk

Ieq �
Pn
k¼1

mkl2k

Q2n

k¼1

rj � qkð Þ

rj

Q2nþ2

k ¼ 1

k 6¼ j

rj � rkð Þ
(B1c)

di;j ¼
Mlli � Ieq þ

Pn
k¼1

mklk lk � lið Þ

Ieq �
Pn
k¼1

mkl2k

Q2n

k¼1

rj � ji;kð Þ

rj

Q2nþ2

k ¼ 1

k 6¼ j

rj � rkð Þ
; for

i ¼ 1; 2;…; n

(B1d)

and for j ¼ 2nþ 3

c2nþ3 ¼
Ml �

Pn
k¼1

mklk

Ieq �
Pn
k¼1

mkl2
k

Q2n

k¼1

qk

Q2nþ2

k¼1

rk

(B2a)

di;2nþ3 ¼
Mlli � Ieq þ

Pn
k¼1

mklk lk � lið Þ

Ieq �
Pn
k¼1

mkl2
k

Q2n

k¼1

ji;k

Q2nþ2

k¼1

rk

; for i ¼ 1; 2;…; n

(B2b)

The 2nþ 2 values of rj are the roots of the following characteris-
tic polynomial:

r sð Þ ¼ Ieqs2 þMlg
� �Yn

i¼1

Mi sð Þ �
Xn

i¼1

mi lis
2 þ g

� �2 Yn

j ¼ 1

j 6¼ i

Mj sð Þ
2
64

3
75

(B3)

where Mi sð Þ ¼ s2 þ 2fxisþ x2
i . Similarly, the 2nþ 1 values of

lj and 2n values of qj are the roots of the following polynomials:

l sð Þ¼ AsþBð Þ
Yn

i¼1

Mi sð Þþ
Xn

i¼1

mi lis
2þg

� �
CisþDið Þ

Yn

j¼1

j 6¼ i

Mj sð Þ
2
64

3
75

(B4)

q sð Þ ¼ Ml

Yn

i¼1

Mi sð Þ �
Xn

i¼1

mi lis
2 þ g

� � Yn

j ¼ 1

j 6¼ i

Mj sð Þ
2
64

3
75 (B5)

where the constants A;B;Ci, and Di are functions of the initial
conditions

A ¼ Ieqh0 �
Xn

i¼1

miliqi0; B ¼ Ieq
_h0 �

Xn

i¼1

mili _qi0

Ci ¼ qi0 � h0lo; Di ¼ _qi0 � li
_hi0 þ 2fxiqi0; for i ¼ 1; 2;…; n

Finally, the 2nþ 1 values of �i;j and 2n values of ji;j for each of
the sloshing modes, i ¼ 1; 2;…; n, are the roots of the following
polynomials:

�i sð Þ ¼ Ni sð Þ
Yn

j ¼ 1

j 6¼ i

Mj sð Þ þ
Xn

j ¼ 1

j 6¼ i

mj ljs
2 þ g

� �
Oij sð Þ

Yn

k ¼ 1

k 6¼ i
k 6¼ j

Mk sð Þ
2
664

3
775

(B6)

ji sð Þ¼ Mlli�Ieqð Þs2
Yn

j¼1

j 6¼ i

Mj sð Þþ
Xn

j¼1

j 6¼ i

mj ljs
2þg

� �
Tij sð Þ

Yn

k¼1

k 6¼ i
k 6¼ j

Mk sð Þ
2
664

3
775

(B7)

where Ni sð Þ; Oij sð Þ, and Tij sð Þ are polynomials defined as follows:

Ni sð Þ ¼ Ali þ IeqCið Þs3 þ Bli þ IeqDið Þs2

þ g AþMlCið Þsþ g BþMlDið Þ
Oij sð Þ ¼ liCj � Ciljð Þs3 þ liDj � Diljð Þs2

þ g Cj � Cið Þsþ g Dj � Dið Þ
Tij sð Þ ¼ lj � lið Þs2

Appendix C: Proof of the System Stability

Rewrite the equations of motion, Eq. (3), as

Ieq þ
Xn

i¼1

miq
2
i

" #
€h �

Xn

i¼1

mili €qi þ
Xn

i¼1

miqi _qi
_h þ _h

Xn

i¼1

miqi _qi

þ Ml sin h� cos h
Xn

i¼1

miqi

" #
g ¼ Ml cos hþ sin h

Xn

i¼1

miqi

" #
€u

(C1)
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�mili
€h þ mi €qi � mi

_hqi
_h þ kiqi � mi sin h g ¼ �ci _qi � mi cos h €u

for i ¼ 1; 2;…; n

(C2)

We define w ¼ h qT
	 
T

where q ¼ q1 q2 … qn

	 
T
as the

nþ 1ð Þ-generalized coordinate vector. Then, the governing equa-
tions of motion can be written as

M wð Þ€w þ C w; _w
� �

_w þG wð Þ ¼ F (C3)

where _w and €w are, respectively, the generalized velocities and
accelerations vectors, and

M¼ IeqþqTD mð Þq �lTD mð Þ
�D mð Þl D mð Þ

" #
; C¼ _qTD mð Þq qTD mð Þ _h

�D mð Þq _h 0

" #

G¼
Gh

D kð Þq�Gq

" #
; F¼

Fh

�D cð Þ _q�Fq

" #

where m ¼ mi; k ¼ ki; c ¼ ci and l ¼ li are the n-vectors of the
sloshing masses, spring constants, damping coefficients, and
masses distances, respectively, D vð Þ is the diagonal matrix of n-

vector v, Gh ¼ Mlg sin h� g cos hmTq; Gq ¼ mg sin h; Fh ¼ Ml½
cos hþmTq sin h�€u, and Fq ¼ m cos h€u. It can be shown by

direct differentiation and substitution that _M � 2C is a skew sym-
metric matrix. The equilibrium equations are corresponding to the
solution of the following equations:

Ml sin ĥ � cos ĥ
Xn

i¼1

miq̂i

" #
g ¼ Ml cos ĥ þ sin ĥ

Xn

i¼1

miq̂i

" #
€u

kiq̂i � mig sin ĥ ¼ �mi cos ĥ€u for i ¼ 1; 2;…; n

To analyze the stability of the system at equilibrium, the follow-
ing candidate Lyapunov function is considered:

V ¼ 1

2
ah2 þ qTD kð Þqþ _w

T
M _w

h i
(C4)

where a is a positive quantity. The time derivative of V is

_V ¼ ah _h þ _qTD kð Þqþ _w
T
M €w þ 1

2
_w

T _M _w

Using Eq. (C3) and the fact that _M � 2C is a skew symmetric
matrix, one can obtain the following:

_V ¼ ah _h þ _qTD kð Þqþ _w
T
F� _w

T
G

¼ ah _h þ _qTD kð Þqþ _hFh � _qTFq � _qTD cð Þ _q
� _hGh � _qTD kð Þqþ _qTGq

¼ � _h Gh � Fh � ah½ � � _qT Fq �Gq þD cð Þ _q
	 


¼ � _h Gh � Fh � ah½ � � _qT D kð ÞqþD cð Þ _q
	 


which satisfies _V � 0 if Gh � Fh > ah. Without loss of generality,
the equilibrium is considered at the origin, i.e., ĥ ¼ 0 and
q̂i ¼ 0; 8i. Therefore, the system is asymptotically stable at the
origin based on LaSalle’s principle.
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