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Abstract Individual stresses in a finite graphite/epoxy lami-
nated composite containing an elliptical hole are determined
from recorded load-induced thermal information. Equilibrium
and compatibility conditions are satisfied using complex-
variable formulation, conformal mapping and analytic contin-
uation. Processing the measured thermal data with a stress
function simultaneous smooths the measured data and evalu-
ates the individual stress components, including on the edge of
the hole. Reliability of experimental results is demonstrated by
FEM and force equilibrium.
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Introduction

Composite materials enjoy favorable specific strength and
stiffness. Machine and structural members frequently contain
holes or notches which produce stress concentrations. Purely
analytical or theoretical stress analyses tend to be available for
only simple situations involving infinite geometries, whereas
many practical problems involve complicated, finite shapes.
Moreover, and like numerical (FEM, FDM) approaches,
analytical/theoretical analyses depend on reliable knowledge
of the boundary conditions. The latter are often unknown in

practice. Recognizing these situations, it is advantageous to be
able to stress analyze experimentally members made of
orthotropic composite materials. Candidate experimental ap-
proaches include moiré, speckle, holography, grids and digital
image correlation. However, such displacement-based tech-
niques necessitate differentiating the recorded data, something
which can be unreliable. On the other hand, thermoelastic
stress analysis (TSA) provides the stresses directly, with-
out having to differentiate the measured information.
Acknowledging the prevalence of elliptical cutouts in struc-
tures such as aerospace and transportation vehicles, and pres-
sure vessels, this paper demonstrates the ability to determine
the stresses in an elliptically perforated orthotropic composite
member by TSA. The approach satisfies equilibrium and com-
patibility using a complex-variable formulation. Experimen-
tal reliability is demonstrated here by FEM and force
equilibrium.

Thermoelastic stress analysis is a non-contacting, non-
destructive experimental method for determining the full-
field stresses in loaded members. The technique enables the
stress analysis of actual structures in their operating environ-
ment with a sensitivity comparable to that of strain gages. No
surface preparation is required other than perhaps a flat black
paint to provide an enhanced and uniform emissivity. While
many experimental techniques are labor-intensive and time
consuming, commercially available hardware and software
renders TSA efficient. By cyclically loading the structure to
satisfy adiabatic reversible conditions, the stresses at a loca-
tion are related to the stress-induced thermal information at
that position. One records the TSA data with a sensitive infra-
red camera. For proportional loading of isotropic materials,
the thermoelastic system signal, S*, is related to the change
in sum of the normal stresses, i.e.,

S* ¼ KΔ σxx þ σyy

� � ¼ KΔ pþ qð Þ ¼ KΔ σrr þ σθθð Þ ð1Þ
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where K is an experimentally-determined thermomechanical
coefficient, and p, q, σrr, σθθ, σxx and σyy are the stresses in the
principal, polar and Cartesian rectangular coordinates, respec-
tively. Under orthotropy, S*, is proportional to the following
change in the linear combination of the normal stresses, σ1

and σ2, in the directions of material symmetry

S* ¼ Δ K1σ1 þ K2σ2ð Þ ð2Þ
The orthotropic thermomechanical coefficients,K1 andK2, are
traditionally determined experimentally. Although the record-
ed thermoelastic data at, and adjacent to, an edge are unreli-
able and raw thermoelastic information in composites is in-
herently noisy, the present technique overcomes these chal-
lenges by avoiding the use of recorded data on and near edges
and processing the measured interior data with a stress func-
tion employing complex variables, mapping and analytic con-
tinuation. The resulting TSA-determined stresses are available
on and in the neighborhood of the edge of the hole without
knowing the distant geometry or boundary conditions.

References [1] through [7] are prior applications of TSA,
including those with holes or notches, in orthotropic compos-
ite structures. Stanley and Chan [1] solved the restrictive case
of a composite cylinder whose stresses are known from
pressure-vessel theory, whereas Kageyama et al [2, 3] ana-
lyzed a composite containing a circular hole. Their method,
while adequate for determining the stresses transverse to the
fibers, seems to be otherwise unrealistic. Some of their results
are also unreliable. Wong [4] proposed a non-adiabatic con-
cept for stress analyzing orthotropic composites. The ap-
proach suffers from experimental scatter and fails to address
the problem of unreliable edge information. Feng et al. [5]
determined the stresses across the net section of a tensile com-
posite strip containing a central circular hole. Although effec-
tive for this simple case, their approach is confined to along a
line so the technique is not readily adaptable to general situa-
tions. Lin and Rowlands [6] evaluated the stresses in a notched
laminate. Their analysis suffered from not having a systematic
means of determining how many Airy coefficients to retain.
Khaja, Samad and Rowlands [7, 8] recently obtained the in-
dividual stresses in elliptically-perforated aluminum plates,
but the method is not applicable for orthotropy.

Experimental Details

Geometry and Mechanical Properties

The developed hybrid-TSA approach is utilized to stress ana-
lyze a finite-width tensile [013/905/013] graphite/epoxy
orthotropic plate (from Kinetic Composites, Inc., Oceanside,
CA) containing a central elliptical hole, Fig. 1. The 5.28 mm
(0.21″) thick plate has an elliptical hole with semi-major axis

a=19.1mm (0.75″) and semi-minor axis b=9.5 mm (0.375″).
The coordinate origin is at the center of the hole and the
response is symmetric about both x- and y-axes. The laminate
elastic properties were obtained from conducting uniaxial ten-
sile tests in the strong/stiff (y-direction), weak/compliant (x-
direction) and 45-degee orientations, [9]. These constitutive
properties were obtained from two different sets of uniaxial
tests (of E11, E22, E45 and ν12). One set of strain-gaged cou-
pons was loaded and unloaded once using hydraulic grips in a
MTS testing machine, whereas the other set of gaged coupons
was loaded and unloadedmany times using the same grips and
MTS machine. The values obtained from the first set of tests

Fig. 1 Loaded finite Gr/E [013/905/013] composite plate with central
elliptical hole
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are E11 = 107.9 GPa,E22, = 30.4GPa,G12 = 3.1 GPa and ν12 =
0.16. The averages of all the tests of the second set of tests are
E11 = 101.0 GPa, E22, = 25.6 GPa, G12 = 2.9 GPa and ν12 =
0.16. The averages of these two sets of values are listed in
Table 1.

Plate Preparation

The plate was initially very lightly polished with 400 grit sand
paper. TSA can be marginally conducted on graphite/graphite
composites directly. However, we prefer applying a coating of
Krylon Ultra-Flat black paint to provide an enhanced and
uniform emissivity. Precaution was taken when sanding the
faces of the plate to neither damage the fibers nor round-off
the edge of the hole which could further erode the quality of
the thermal information close to the edge of the hole.

Loading

The plate was subjected to a cyclically varying sinusoidally load
in a 20 kips capacity MTS hydraulic testing machine with a
mean value of 7.1 kN (1600 lbs.), maximum value of 10.7 kN
(2400 lbs.) and a minimum value of 3.6 kN (800 lbs.) at a rate of
20 Hz. Our experience indicates this is a suitable frequency to
use with perforated graphite/epoxy composites. Phase informa-
tion was also monitored to ensure that adiabatic conditions were
maintained. The corresponding load-induced TSA data were
recorded using a liquid-nitrogen cooled TSADelta Therm mod-
el DT1410 system having a sensor array of 256 horizontal by
256 vertical pixels (Stress Photonics, Madison, WI).

TSA Recording

The thermoelastic system signal, S*, was recorded by the data
acquisition system which is equipped with Delta Vision
Software, Fig. 2(a). TSA images were captured and averaged
over two minutes durations, and then exported to Excel while
converting each pixel into a data point, i.e., 256 by 256matrix.
Pixel size is 0.35 mm (0.014 inch). Since TSA data typically
are unreliable on and near an edge, no recorded TSA informa-
tion was used within six pixel positions (0.1 a = 2 mm) of the
edge of the hole.

TSA Calibration

The thermoelastic coefficients K1 and K2 were evaluated from
uniaxial tensile coupons loaded in the strong/stiff (vertical, y -
direction) and weak/compliant (horizontal, x -direction) lami-
nate orientations of the orthotropic [013/905/013] composite
plate. These coupons were painted and tested at 20 Hz on
the same day as the elliptically-perforated plate. From equa-
tion (2), the values of the thermomechanical coefficients were
determined to be K1 = 1.8 mU/MPa (12.38 U/psi) and K2 =
14.7mU/MPa (101.25 U/psi). The unit U is used to signify the
raw TSA output, in uncalibrated signal units.

Data Processing

Figure 2(a) is a contour plot of the rawmeasured thermoelastic
data throughout a rectangular region containing the hole in the
orthotropic composite (E11/E22 ~ 4). The individual stresses
throughout the region containing the elliptical hole were de-
termined from such thermoelastic data. Since the plate behav-
ior is symmetrical about the vertical y - and horizontal x -axes,
the recorded thermoelastic data, S*, of Fig. 2(a) were averaged
throughout the four quadrants. The resulting S* information is
plotted in the first quadrant in Fig. 2(b). Due to unreliability,
the recorded data along and near the edge of the hole were not
used. Only the thermal information within the region covered
by 1.1 a (21 mm) and 1.1 b (10.5 mm) to 1.85 a (35.2 mm)
and 1.85 b (17.6 mm) was considered, as indicated by the
source locations of the 2558 values of S* shown in Fig. 3.
The region of Fig. 3 will be denoted as R*. Like most exper-
imental data, the recorded S* values include some noise which
necessitates collecting more measured input values than the
number of unknown Airy coefficients, i.e., the number of
equations, P, will exceed the number of real coefficients, 2N.
The resulting overdetermined system of equations with which
to evaluate the Airy coefficients was solved using least-
squares. The subsequent analysis demonstrates that the de-
scribed approach is able to evaluate stresses reliably at the
edge of the elliptical hole without using any thermoelastic data
on, or very near, the edge. Recognizing the most important
stresses occur on or near the edge of the hole, only a ‘ring
shaped’ segment, Figs. 2(b) and 3, rather than the entire quad-
rant, Fig. 2(a), was considered.

Relevant Equations

Basic Equations

The method behind determining the state of stress at and near
a geometry discontinuity lies in coupling the Airy stress func-
tion with the measured thermoelastic data, and hence the term
hybrid. For plane problems having rectilinear orthotropy and

Table 1 Laminate elastic properties*

Elastic Modulus, E11 104.4 GPa = 15.0 × 106 psi

Elastic Modulus, E22 28.0 GPa= 4.0 × 106 psi

Shear Modulus, G12 3.0 GPa= 0.43 × 106 psi

Poisson’s ratio, ν12 0.16

*The 1- and 2-orientations are directions of laminate material symmetry.
They are in the longitudinal/vertical and transverse/horizontal directions,
respectively, Fig. 1
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no body forces, the Airy stress function, F, satisfying ∇4F = 0,
can be expressed as a summation of two arbitrary analytical
functions, F1(z1) and F2(z2), in terms of the complex variables,
z1 and z2, as [10]

F ¼ 2Re F1 z1ð Þ þ F2 z2ð Þ½ � ð3Þ
such that zj= x+μjy for j=1,2 and Re denotes the ‘real part’ of
a complex number. The complexmaterial properties μ1 and μ2
are two distinct roots of the following characteristic equation
associated with the compatibility equation

a11μ
4 þ 2a12 þ a66ð Þμ2 þ a22 ¼ 0 ð4Þ

where aij are the elastic compliances occurring in the general-
ized Hooke’s law. With a11 = 1/E11, a12 =− ν12/E11, a22 = 1/
E22, and a66=1/G12, the characteristic equation becomes

μ4 þ E11

G12
−2ν12

� �
μ2 þ E11

E22
¼ 0 ð5Þ

The 1- and 2-orientations are the directions of laminate mate-
rial symmetry, and are in the longitudinal/vertical and
transverse/horizontal directions, respectively, Fig. 1. The roots
of equations (5) are complex, i.e., μ1 =α+ iβ, μ2 =γ+ iδ,
μ3 ¼ μ1, and μ4 ¼ μ2. The stresses in rectangular coordinates
(x, y) of the physical z(=x+ iy) plane can now be expressed in
terms of the stress function. By introducing the new stress
functions

Φ z1ð Þ ¼ dF1 z1ð Þ
dz1

; and Ψ z2ð Þ ¼ dF2 z2ð Þ
dz2

ð6Þ

the stresses can be written as

σx ¼ 2Re μ2
1Φ

0
z1ð Þ þ μ2

2Ψ
0
z2ð Þ

h i
ð7Þ

σy ¼ 2Re Φ
0
z1ð Þ þΨ

0
z2ð Þ

h i
ð8Þ

τ xy ¼ −2Re μ1Φ
0
z1ð Þ þ μ2Ψ

0
z2ð Þ

h i
ð9Þ

where primes denote differentiation with respect to the argu-
ment. Plane problems of elasticity classically involve deter-
mining the stress functions, Φ(z1) and Ψ(z2), throughout a
component and subject to the boundary conditions around
its entire edge. For a region of a component adjacent to a
traction free-edge, Φ and Ψ can be related to each other by
the conformal mapping and analytic continuation techniques.
The stresses can therefore be expressed in terms of the single
stress function, Φ. Moreover, Φ will be represented by a trun-
cated power-series expansion whose unknown complex coef-
ficients can all be evaluated from experimental measured data.

Fig. 2 (a) TSA image, S*, of perforated orthotropic plate loaded; (b) averaged thermoelastic data, S*, throughout the four quadrants at a range of 7.12
kN (1600 lbs.)
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Fig. 3 Source locations of employed S* data (P = 2558 data points)
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Once Φ and Ψ are fully evaluated, the individual stresses are
available from equations (7) through (9). For a significantly
large region, it may be necessary to satisfy other boundary
conditions at discrete locations.

Conformal Mapping

Conformal mapping is introduced to simplify the plane prob-
lem by mapping the region Rz of a complicated physical
z= x+ iy plane of a loaded component into a region Rζ of a
simpler shape of the ζ= ξ+ iη plane, the latter being a half
plane or unit circle. This mapping function preserves angles
and maps a section of the real axis of the ζ plane, Γζ, into the
traction-free boundary condition, Γ, of the physical region, Rz,
of the loaded component. The new coordinate system (and
resulting geometry) is usually chosen to aid in solving the
equations and the obtained solution from this simplified do-
main can then be mapped back to the original physical geom-
etry for a valid solution. Assume that a mapping function of
the form

z ¼ ω ζð Þ ð10Þ

exists and which maps Rζ of the simpler plane into Rz of the
more complicated physical plane. For orthotropy, auxiliary
planes and their induced mapping functions are defined in
terms of ζj= ξ+μjη so by substituting zj= x+μjy into equation
(10) one obtains

z j ¼ ω j ζ j

� �
; j ¼ 1; 2 ð11Þ

The induced conformal mapping functions are therefore
one-to-one and invertible. The stress functions Φ and Ψ
can now be expressed as analytic functions of ζ1 and ζ2,
respectively,

Φ z1ð Þ ¼ Φ ω1 ζ1ð Þ½ �≡Φ ζ1ð Þ ð12Þ

Ψ z2ð Þ ¼ Ψ ω2 ζ2ð Þ½ �≡Ψ ζ2ð Þ ð13Þ

The derivatives of these stress functions with respect to each
argument are

Φ
0
z1ð Þ ¼ Φ

0
ζ1ð Þ dζ1

dz1
¼ Φ

0
ζ1ð Þ

ω0
1 ζ1ð Þ ð14Þ

Ψ
0
z2ð Þ ¼ Ψ

0
ζ2ð Þ

ω0
2 ζ2ð Þ ð15Þ

The analyticity of the mapping functions satisfies the
equilibrium and compatibility equations throughout re-
gion Rz of the physical plane. Using the concept of ana-
lytic continuation, the stress functions for a region Rz

adjacent to a traction-free boundary of an orthotropic ma-
terial are related by [11, 12]

Ψ ζ2ð Þ ¼ BΦ ζ2
� �

þ CΦ ζ2ð Þ ð16Þ

where constants B and C are the following complex ma-
terial properties

B ¼ μ2−μ1

μ2−μ2

; C ¼ μ2−μ1

μ2−μ2

ð17Þ

Equation (16) enables the elastic state of the structure to
be expressed in terms of a single stress function, Φ(ζ1),
the latter which can be represented by a truncated either
Taylor series or Laurent series. Mapping the boundary of
the hole in the physical z -plane to the real axis of the ζ -
plane uses a truncated Taylor series expansions whereas
mappings the boundary of the physical plane to the unit
circle in the ζ -plane employs a Laurent series. The finite
Taylor series expansion of the stress function is [13]

Φ ζ1ð Þ ¼
XN
j¼0

Aj ζ1−ζ0ð Þ j ð18Þ

whereas the stress function expressed as Laurent series
expansion is [13]

Φ ζ1ð Þ ¼
XN

j ¼ −N ;…
j≠0

Ajζ
j
1 ð19Þ

and Aj= aj+ ibj are the unknown complex coefficients, ζ0
is some point on the traction-free boundary and the sum-
mation in Laurent expansion involves only odd values of
j. Substituting equation (18) or (19) into equation (16)
yields

Ψ ζ2ð Þ ¼
XN
j¼0

AjBþ AjC
� �

ζ2−ζ0ð Þ j ð20Þ

when using a Taylor series while for a Laurent expansion
it is

Ψ ζ2ð Þ ¼
XN

j ¼ −N ;−N þ 2;…
j≠0

AjBζ
− j
2 þ AjCζ

j
2

� �
ð21Þ

Exp Mech



Āj is the complex conjugate of Aj. At least for a finite simply-
connected regionRζ,Φ(ζ1) is a single-valued analytic function.

Upon combining equations (6) through (20), one obtains the
following expressions for the stress if using a Taylor series,

σxx ¼ 2
XN
j¼1

Re
jμ2

1

ω0
1 ζ1ð Þ ζ1−ζ0ð Þ j−1 þ jμ2

2C

ω0
2 ζ2ð Þ ζ2−ζ0ð Þ j−1

� 	
Aj þ jμ2

2B

ω0
2 ζ2ð Þ ζ2−ζ0ð Þ j−1

� 	
Aj


 �
ð22Þ

σyy ¼ 2
XN
j¼1

Re
j

ω0
1 ζ1ð Þ ζ1−ζ0ð Þ j−1 þ jC

ω0
2 ζ2ð Þ ζ2−ζ0ð Þ j−1

� 	
Aj þ jB

ω0
2 ζ2ð Þ ζ2−ζ0ð Þ j−1

� 	
Aj


 �
ð23Þ

σxy ¼ −2
XN
j¼1

Re
jμ1

ω0
1 ζ1ð Þ ζ1−ζ0ð Þ j−1 þ jμ2C

ω0
2 ζ2ð Þ ζ2−ζ0ð Þ j−1

� 	
Aj þ jμ2B

ω0
2 ζ2ð Þ ζ2−ζ0ð Þ j−1

� 	
Aj


 �
ð24ÞÞ

Upon combining equations (6) through (19) and (21) when using
a Laurent series, the individual stresses can be expressed as

σxx ¼ 2
XN

j ¼ −N ;−N þ 2;…
j≠0

Re j
μ2
1ζ1

j−1

ω0
1 ζ1ð Þ þ

Cμ2
2ζ2

j−1

ω0
2 ζ2ð Þ

� 	
Aj− jμ2

2B
ζ2

− j−1

ω0
2 ζ2ð Þ

� 	
Aj


 �
ð25Þ

σyy ¼ 2
XN

j ¼ −N ;−N þ 2;…
j≠0

Re j
ζ1

j−1

ω0
1 ζ1ð Þ þ

Cζ2
j−1

ω0
2 ζ2ð Þ

� 	
Aj− jB

ζ2
− j−1

ω0
2 ζ2ð Þ

� 	
Aj


 �
ð26Þ

σxy ¼ −2
XN

j ¼ −N ;−N þ 2;…
j≠0

Re j
μ1ζ1

j−1

ω0
1 ζ1ð Þ þ

Cμ2ζ2
j−1

ω0
2 ζ2ð Þ

� 	
Aj− jμ2B

ζ2
− j−1

ω0
2 ζ2ð Þ

� 	
Aj


 �
ð27Þ

The only unknowns in these expressions for the
stresses are the complex coefficients, Aj. The latter
can be determined from measured thermoelastic data.
Choosing the y − axis parallel to the strongest, stiff

orientation of the composite, Fig. 1, i.e., 1-direction
of an orthotropic composite material, and introducing
the Taylor series according to equation (18), the TSA
signal S* can be expressed as

S* ¼ K1σyy þ K2σxx

¼ 2
XN
j¼1

Re
j K1 þ K2μ2

1

� �
ω0

1 ζ1ð Þ ζ1−ζ0ð Þ j−1 þ j K1 þ K2μ2
2

� �
C

ω0
2 ζ2ð Þ ζ2−ζ0ð Þ j−1

� 	
Aj þ

j K1 þ K2μ2
2

� �
B

ω0
2 ζ2ð Þ ζ2−ζ0ð Þ j−1

� 	
Aj


 �
ð28Þ
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Upon introducing the Laurent series according to equation
(19), the thermoelastic data S* becomes

S* ¼ K1σyy þ K2σxx

¼ 2
XN

j ¼ −N ;−N þ 2;…
j≠0

Re
j K1 þ K2μ2

1

� �
ω0

1 ζ1ð Þ ζ1
j−1 þ j K1 þ K2μ2

2

� �
C

ω0
2 ζ2ð Þ ζ2

j−1
� 	

Aj−
j K1 þ K2μ2

2

� �
B

ω0
2 ζ2ð Þ ζ2

− j−1
� 	

Aj


 �
ð29Þ

The thermoelastic data, S*, at P different locations are
chosen to be inside the region R*, Fig. 3. Equations
(28) and (29) each forms a system of simultaneous lin-
ear equations, [M]P × 2N{c}2N × 1 = {S*}P × 1, where matrix
[M] consists of analytical expression of S*, vector
{c}2N × 1 = {a1, b1, a2, b2, …, aN, bN} has 2N unknown
real coefficients (aj and bj) and vector {S*}P × 1 has P
equations such that P≫ 2N. The best values of the co-
efficients, Aj, in a least-squares numerical sense, can be
determined from measured values of S*. The variables
ζj= ξ+μjη, in equations (28) and (29) are related to the
physical locations z= x+ iy through the inverse mapping
function zj =ωj(ζj). The individual stresses are then
known throughout the region Rz, including on the
traction-free edge Γ from equations (22) through (24)
if using the Taylor expansion or from equations (25)
through (27) if using the Laurent expansion.

Stresses in Polar and Elliptical Coordinates

The polar components of stresses are evaluated by converting
the Cartesian stresses using standard transformation matrix

σrr
σθθ

σrθ

2
4

3
5 ¼

cos2θ sin2θ 2sinθcosθ
sin2θ cos2θ −2sinθcosθ

−sinθcosθ sinθcosθ cos2θ−sin2θ

2
4

3
5 σxx

σyy

σxy

2
4

3
5
ð30Þ

The stresses in elliptical coordinates, where n is the normal to
the edge of the elliptical hole and t is the tangential to the edge
of the hole, can then be obtained from equation (31)

σnn

σtt

σnt

2
4

3
5 ¼

cos2ψ sin2ψ 2sinψcosψ
sin2ψ cos2ψ −2sinψcosψ

−sinψcosψ sinψcosψ cos2ψ−sin2ψ

2
4

3
5 σrr

σθθ

σrθ

2
4

3
5

ð31Þ

with ψ=α− θ, as shown in Fig. 4. Using elliptical geometry,
the normal angle, α, is evaluated from

α ¼ tan−1
a2tanθ

b2

� �
ð32Þ

From equation (31), the components of stress σtt, tangential to
the edge of the elliptical hole is given by

σtt ¼ sin2ψσrr þ cos2ψσθθ−2sinψcosψσrθ ð33Þ

Mapping Formulations for an Elliptical Shape [6]

The objective here is to apply the approach to a region Rz

adjacent to a traction-free boundary of a physical member
provided an appropriate mapping function is available to
map the region Rζ into region Rz, where Γζ, a section of the
real axis in the ζ -plane, goes to the physical traction-free
boundary, Γ. For a region adjacent to the traction-free ellipti-
cal edge in Figs. 1 through 3, the following function maps the
region Rζ of the ζ -plane into region Rz of the z -physical plane
where Γζ is a section of the real axis of the ζ -plane, Fig. 5.

z ¼ ω ζð Þ ¼ aþ b

2

i−ζ
iþ ζ

� �
þ a−b

2

iþ ζ
i−ζ

� �
þ zc ð34Þ

Quantities a and b are the lengths of the major (parallel to the
horizontal x -direction) and minor (parallel to the vertical y -
direction) axes of the ellipse, respectively, and zc is the center
of the ellipse, Figs. 1 and 5. For convenience, the origin of the
coordinate system is chosen at the center of the ellipse, i.e.,
zc=0. Substituting equation (34) into zj= x+μjy produces

z j ¼ ω j ζ j

� � ¼ a−ibμ j

2

i−ζ j

iþ ζ j

 !
þ aþ ibμ j

2

iþ ζ j

i−ζ j

 !
; j ¼ 1; 2

ð35Þ

The derivatives of this mapping function are
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ω
0
j ζ j

� � ¼ −i
a−ibμ j

iþ ζ j

� �2 þ i
aþ ibμ j

i−ζ j

� �2 ; j ¼ 1; 2 ð36Þ

and the inverse of the induced mapping functions are

ζ j ¼ ω−1
j z j
� � ¼ i

a−ibμ j− z j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2j−a2−b

2μ2
j

q� �
a−ibμ j þ z j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2j−a2−b

2μ2
j

q� � ; j ¼ 1; 2

ð37Þ
The branch of the square root in equation (37) is chosen such
that Im ζj≤ 0 for j=1,2.

For a region adjacent to an elliptical hole of major radius, a,
and minor radius, b, the following function using zj= x+μjy
where x=a cosθ and y=−b sin θ

z j ¼ ω j ζ j

� � ¼ a−ibμ j

2

1

ζ j
þ aþ ibμ j

2
ζ j; j ¼ 1; 2 ð38Þ

maps the region of a unit circle, Rζ, in the ζ -plane into the
region Rz in the z -physical plane. The derivatives of this
mapping functions are

ω
0
j ζ j

� � ¼ aþ ibμ j

2
−
a−ibμ j

2

1

ζ2j
; j ¼ 1; 2 ð39Þ

and the inverse of the induced mapping functions are

ζ j ¼ ω−1
j z j
� � ¼ z j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2j−a2−μ2

j b
2

q
aþ ibμ j

; j ¼ 1; 2 ð40Þ

The branch of the square root in equation (40) is chosen such
that |ζj| < 1 for j=1,2.

Finite Element Analysis

For comparison with the TSA results, a finite element analysis
(FEA) using ANSYS prediction was prepared of the plate of
Fig. 1 and the elastic properties of Table 1. Due to the sym-
metry, only the upper right quarter of the plate was modeled
with symmetrical boundary conditions applied at the bottom
and left edges. Based on the static equivalent, a far-field stress
of

σ0 ¼ F

A
¼ 17:68MPa 2; 564 psið Þ

Fig. 4 Coordinate systems

Fig. 5 Conformal mapping for elliptical boundary
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Fig. 6 Contour plots of recorded (right) and reconstructed (left) S* throughout region adjacent to elliptical hole using (a) Taylor and (b) Laurent series
expansion (4 complex coefficients)

Fig. 7 Plots of (a) σtt/σ0, (b) σθθ/σ0, (c) σrr/σ0 and (d) σrθ/σ0 along edge of hole from ANSYS and TSA (Taylor and Laurent series)
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was applied numerically to the top edge of the plate.
Plane 82 Isoparametric elements with eight nodes were
employed. Very small elements were used in the neigh-
borhood of the elliptical hole to obtain reliable data. A
convergence test was applied until the change in results
of the maximum stress between two successive meshing
was less than 2 %. The FE model utilizes 67,500 ele-
ments and 68,101 nodes. A motivation for developing
the present ability is to enable stress analysis of
orthotropic cases experimentally which cannot be ana-
lyzed numerically, although FEM is used here. The ge-
ometry and loading of the Fig. 1 were deliberately se-
lected so as one could obtain a reliable FEA result with
which to validate the experimental results. The devel-
oped TSA method is applicable to more complicated
problems which are difficult for FEM. For example,
while industry makes prevalent use of FEM, strain gages
are often employed in that environment to obtain the
boundary conditions for the FEA.

Results

The complex coefficients, Aj=aj+ ibj, were evaluated by two
approaches: the first approach uses equations (35) through
(37) and the Taylor representation of the stress function of
equation (18) to map the physical plane to a half-plane in ζ -
plane; the second approach uses equations (38) through (40)
and the Laurent series expansion of equation (19) to map the
physical plane to the unit circle in the ζ -plane. The unreliable
thermoelastic data on and near the elliptical boundary moti-
vated using only thermoelastic data from 1.1 a and 1.1 b to
1.85 a and 1.85 b. The complex coefficients Ajwere evaluated
individually from equations (28) or (29) employing the re-
corded thermoelastic data inside the region, R*, utilizing the
Taylor and Laurent representations for the stress function, re-
spectively. The individual stresses throughout region Rz, in-
cluding on the edge Γ where no thermoelastic input data were
employed, were evaluated using equations (22) through (24)
for the Taylor expansion or equations (25) through (27) for the

Fig. 8 Contours plot of (a) σxx/σ0, (b) σyy/σ0, and (c) σxy/σ0 throughout region adjacent to hole by FEA (right) and (right) TSA using Taylor series
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Laurent expansion. Among other techniques, the number of
complex Airy coefficients, N, to retain in the stress functions
was assessed by evaluating the difference between the magni-
tude of experimentally based thermoelastic data and those
predicted by the present hybrid method using the root mean
square (RMS) method. This RMS analyses and the condition
number of Airy matrix suggests using 8 real coefficients is
suitable with either the first (Taylor expansion) and second
(Laurent expansion) approach. Having determined how many
Airy coefficients to retain, their values were determined by
least squares. Knowing the magnitudes of the Airy coeffi-
cients, the stresses are available from equations (22) through
(27). The appropriateness of utilizing N=4 complex coeffi-
cients is substantiated by comparing the reconstructed and
experimentally-based, S*, Fig. 6. The tangential stress, σtt,
from equation (33) and the polar components of stress from
equations (30), normalized with respect to σ0 = 17.68 MPa,
are plotted on the edge of the hole in Fig. 7. Not surprising, the
magnitudes of σtt/σ0 and σθθ/σ0 are very similar to each other,
and σrr/σ0 and σrθ/σ0 are small, on the edges of the hole.
Contour plots of normalized Cartesian components of stress
by the hybrid technique using the first approach (Taylor series)
and ANSYS are plotted in Fig. 8. These TSA-based results
agree with FEM predictions.

TSA reliability was further assessed by checking load equi-
librium. This was done by numerically integrating the TSA-
determined vertical stress, σyy, along the line y = 0 (line AB in
Fig. 1),

F ¼
Z

σyydA ¼ 2

Z
W=2

a

σyytdx

where t and W are the plate thickness and width, respectively.
The integration of the TSA-determined stress was computed
using the trapezoidal rule. Results based on the Taylor and
Laurent representations are 7.4 kN (1658 lb) and 6.8 kN
(1529 lb), respectively, both of which are close to the physically
applied load of 7.12kN (1600 lbs.).

Effect of Input Data Location

Since recorded TSA data at and close to an edge are
unreliable, one typically does not employ measured data
within two or three pixels away from the edge of the hole.
The previous results are based here on the 2558 recorded
values of S*, all of which originate 6 pixels (0.1 a =
2 mm) away from the edge of the hole. A small subrou-
tine was subsequently prepared to assess the effect on the
tangential stress, σtt, at the edge of the hole when
employing S* data at different minimum distances (num-
ber of pixels) from the hole, Fig. 9. These results demon-
strate that neither the Taylor nor Laurent formulations are
acceptable with thermal information collected up to one
pixel away from the edge of the hole. Rather, one should
use TSA data which originates at least 2 pixels away from
the edge of the hole.

Summary, Discussion and Conclusions

A hybrid method which processes the load-induced TSA
signals with a stress function in complex variables, to-
gether with conformal mapping and analytic continuation

Fig. 9 Effect of pixel location on TSA-determined σtt/σ0 along edge of hole using (a) Taylor series, (b) Laurent series
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concepts, provides the individual stresses on and in the
neighborhood of an elliptical hole in a finite orthotropic
composite plate. Both Laurent and Taylor series repre-
sentations of the stress function are utilized with equal
satisfaction. Unlike purely theoretical or numerical
methods, knowledge of the external boundary conditions
is unnecessary. TSA results agree with those from FEM
and force equilibrium. Results demonstrate the need to
not employ recorded TSA data within at least two pixels
of the edge of the hole. Unlike previous TSA ap-
proaches, rational means are provided with which to as-
sess how many coefficients to retain and the suitability
of employing either the Laurent or Taylor series repre-
sentation is shown experimentally. More complicated
shaped cutouts might necessitate the use of overlapping
applications of the method.

A motivation for developing the present method is to
enable stress analysis of orthotropic cases which cannot
be analyzed numerically. The present geometry and load-
ing were deliberately selected so as one could obtain a
reliable FEA with which to compare the experimental
results and thereby validate the presented experimental
technique. The developed thermoelastic method is appli-
cable to more complicated problems which are difficult
for FEM.
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